Advertisement

Cardiac Purkinje cells

Published:September 18, 2009DOI:https://doi.org/10.1016/j.hrthm.2009.09.017
      Purkinje cells are specialized for rapid propagation in the heart. Furthermore, Purkinje fibers as the source as well as the perpetuator of arrhythmias is a familiar finding. This is not surprising considering their location in the heart and their unique cell ultrastructure, cell electrophysiology, and mode of excitation–contraction coupling. This review touches on each of these points as we outline what is known today about Purkinje fibers/cells.

      Keywords

      Abbreviations:

      AP (action potential), APD90 (action potential duration at 90% repolarization), AV (atrioventricular), DAD (delayed afterdepolarization), EAD (early afterdepolarization), IZPC (Purkinje cell from 48-hour infarcted heart), RyR (ryanodine receptor), SR (sarcoplasmic reticulum)
      To read this article in full you will need to make a payment
      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jay V.
        The extraordinary career of Dr. Purkinje.
        Arch Pathol Lab Med. 2000; 124: 662-663
        • Tawara S.
        Das Reizleitungssystem des saugetierherzens.
        Gustav Fischer, Jena1906
        • Hoffman B.F.
        • Cranefield P.F.
        • Stuckey J.H.
        • Amer N.S.
        • Cappelletti R.
        • Domingo R.T.
        Direct measurement of conduction velocity in insitu specialized conduction system of mammalian heart.
        Proc Soc Exp Biol Med. 1959; 102: 55-57
        • Weerasooriya R.
        • Hsu L.F.
        • Scavee C.
        • et al.
        Catheter Ablation of ventricular fibrillation in structurally normal hearts targeting the RVOT and Purkinje ectopy.
        Herz. 2003; 28: 598-606
        • Lopera G.
        • Stevenson W.G.
        • Soejima K.
        • et al.
        Identification and ablation of three types of ventricular tachycardia involving the His-Purkinje system in Patients with heart disease.
        J Cardiovasc Electrophysiol. 2004; 15: 52-58
        • Wright M.
        • Sacher F.
        • Haissaguerre M.
        Catheter ablation for patients with ventricular fibrillation.
        Curr Opin Cardiol. 2008; 24: 56-60
        • Bogun F.
        • Good E.
        • Reich S.
        • et al.
        Role of Purkinje fibers in post-infarction ventricular tachycardia.
        J Am Coll Cardiol. 2006; 48: 2500-2507
        • Crijns H.
        • Smeets J.
        • Rodriquez L.M.
        • et al.
        Cure of interfascicular reentrant ventricular tachycardia by ablation of the anterior fascicle of the left bundle branch.
        J Cardiovasc Electrophysiol. 1995; 6: 486-492
        • Cerrone M.
        • Noujaim S.F.
        • Tolkacheva E.G.
        • et al.
        Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia.
        Circ Res. 2007; 101: 1039-1048
        • Szumowski L.
        • Sanders P.
        • Walczak F.
        • et al.
        Mapping and ablation of polymorphic ventricular tachycardia after myocardial infarction.
        J Am Coll Cardiol. 2004; 44: 1700-1706
        • Haissaguerre M.
        • Extramiana F.
        • Hocini M.
        • et al.
        Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes.
        Circulation. 2003; 108: 925-928
        • Marrouche N.F.
        • Verma A.
        • Wazni O.
        • et al.
        Mode of initiation and ablation of ventricular fibrillation storms in patients with ischemic cardiomyopathy.
        J Am Coll Cardiol. 2004; 43: 1715-1720
        • Pogwizd S.M.
        Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits.
        Circulation. 1995; 92: 1034-1048
        • Pogwizd S.M.
        • Hoyt R.H.
        • Saffitz J.E.
        • Corr P.B.
        • Cox J.L.
        • Cain M.E.
        Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart.
        Circulation. 1992; 86: 1872-1887
        • Sommer J.R.
        • Johnson E.A.
        Cardiac Muscle.
        J Cell Biol. 1968; 36: 497-526
        • Di Maio A.
        • Ter Keurs H.E.D.J.
        • Franzini-Armstrong C.
        T-tubular profiles in Purkinje fibres of mammalian myocardium.
        J Musc Res Cell Motil. 2007; 28: 115-121
        • Desplantez T.
        • Dupont E.
        • Severs N.
        • Weingart R.
        Gap junction channels and cardiac impulse propagation.
        J Membr Biol. 2007; 218: 13-28
        • Gintant G.A.
        • Datyner N.B.
        • Cohen I.S.
        Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibers.
        Biophys J. 1984; 45: 509-512
        • Persson F.
        • Andersson B.
        • Duker G.
        • Jacobson I.
        • Carlsson L.
        Functional effects of the late sodium current inhibition by AZD7009 and lidocaine in rabbit isolated atrial and ventricular tissue and Purkinje fibre.
        Eur J Pharmacol. 2007; 558: 133-143
        • Robinson R.B.
        • Boyden P.A.
        • Hoffman B.F.
        • Hewett K.W.
        Electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells.
        Am J Physiol. 1987; 253: H1018-H1025
        • Varro A.
        • Balati B.
        • Iost N.
        • et al.
        The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fiber repolarization.
        J Physiol. 2000; 523: 67-81
        • Abi-Gerges N.
        • Small B.G.
        • Lawrence C.L.
        • Hammond T.G.
        • Valentin J.P.
        • Pollard C.E.
        Gender differences in the slow delayed (IKs) but not in inward (IK1) rectifier K+ currents of canine Purkinje fibre cardiac action potential.
        Br J Pharmacol. 2005; 147: 653-660
        • Gadsby D.C.
        • Cranefield P.F.
        Two levels of resting potential in cardiac Purkinje fibers.
        J Gen Physiol. 1977; 70: 725-746
        • Shah A.
        • Cohen I.S.
        • Datyner N.B.
        Background K+ current in isolated canine cardiac Purkinje myocytes.
        Biophys J. 1987; 52: 519-525
        • Boyden P.A.
        • Albala A.
        • Dresdner K.
        Electrophysiology and ultrastructure of canine subendocardial Purkinje cells isolated from control and 24 hour infarcted hearts.
        Circ Res. 1989; 65: 955-970
        • Dun W.
        • Boyden P.A.
        The Purkinje cell; 2008 style.
        J Mol Cell Cardiol. 2008; 45: 617-624
        • Kline R.P.
        • Kupersmith J.
        Effects of extracellular potassium accumulation and sodium pump activation on automatic canine Purkinje fibres.
        J Physiol. 1982; 324: 507-533
        • DiFrancesco D.
        A new interpretation of the pace-maker current in calf Purkinje fibres.
        J Physiol. 1981; 314: 359-376
        • DiFrancesco D.
        • Lakatta E.G.
        What keeps us ticking, a funny current, a calcium clock or both?.
        J Mol Cell Cardiol. 2009; 47: 157-170
        • Yu H.
        • Chang F.
        • Cohen I.S.
        Pacemaker current i(f) in adult canine cardiac ventricular myocytes.
        J Physiol. 1995; 485: 469-483
        • Hart G.
        • Dukes I.D.
        An analysis of the rate dependent action of lidoflazine in mammalian sinoatrial node and Purkinje fibers.
        J Mol Cell Cardiol. 1984; 16: 33-42
        • Dangman K.H.
        • Miura D.S.
        Does I-f control normal automatic rate in canine cardiac Purkinje fibers?.
        J Cardiovasc Pharmacol. 1987; 10: 332-340
        • Noble D.
        • Tsien R.W.
        The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres.
        J Physiol. 1968; 195: 185-214
        • Vassalle M.
        The vicissitudes of the pacemaker current I(Kdd) of cardiac Purkinje fibers.
        J Biomed Sci. 2007; 14: 699-716
        • Shi W.
        • Wymore R.
        • Yu H.
        • et al.
        Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues.
        Circ Res. 1999; 85: e1-e6
        • Robinson R.B.
        • Boyden P.A.
        • Hoffman B.F.
        • Hewett K.W.
        The electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells.
        Am J Physiol. 1987; 253: H1018-H1025
        • Callewaert G.
        • Carmeliet E.E.
        • Vereecke J.
        Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current.
        J Physiol. 1984; 349: 643-661
        • Boyden P.A.
        • Pu J.
        • Pinto J.M.B.
        • Ter Keurs H.E.D.J.
        Ca2+ transients and Ca2+ waves in Purkinje cells.
        Circ Res. 2000; 86: 448-455
        • Ter Keurs H.E.D.J.
        • Boyden P.A.
        Calcium and arrhythmogenesis.
        Physiol Rev. 2007; 87: 457-506
        • Wier W.G.
        • Isenberg G.
        Intracellular Ca transients in voltage clamped cardiac Purkinje fibers.
        Pflugers Arch. 1982; 392: 284-290
        • Marban E.
        • Wier W.G.
        Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction in Purkinje fibers.
        Circ Res. 1985; 56: 133-138
        • Hess P.
        • Wier W.G.
        Excitation-contraction coupling in cardiac Purkinje fibers.
        J Gen Physiol. 1984; 83: 417-433
        • Spitzer K.W.
        • Cordeiro J.M.
        • Ershler P.R.
        • Giles W.
        • Bridge J.H.B.
        Confocal microscopy reveals that calcium transients in Purkinje myocytes are initiated at the cell periphery.
        Circ. 1997; 96: I-239
        • Boyden P.A.
        • Barbhaiya C.
        • Lee T.
        • Ter Keurs H.E.D.J.
        Nonuniform Ca2+ transients in arrhythmogenic Purkinje cells that survive in the infarcted canine heart.
        Cardiovasc Res. 2003; 57: 681-693
        • Stuyvers B.D.
        • Dun W.
        • Matkovich S.J.
        • Sorrentino V.
        • Boyden P.A.
        • Ter Keurs H.E.D.J.
        Ca2+ sparks and Ca2+ waves in Purkinje Cells: a triple layered system of activation.
        Circ Res. 2005; 97: 35-43
        • Kass R.S.
        • Lederer W.J.
        • Tsien R.W.
        • Weingart R.
        Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres.
        J Physiol (Lond). 1978; 281: 187-208
        • Lederer W.J.
        • Tsien R.W.
        Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers.
        J Physiol. 1976; 263: 73-100
        • Cordeiro J.M.
        • Bridge J.H.B.
        • Spitzer K.W.
        Early and delayed afterdepolarizations in rabbit heart Purkinje cells viewed by confocal microscopy.
        Cell Calcium. 2000; 29: 289-297
        • Miura M.
        • Ishide N.
        • Numaguchi H.
        • Takishima T.
        Diversity of early afterdepolarizations in guinea pig myocytes; Spatial characteristics of intracellular Ca2+ concentration.
        Heart Vessels. 1995; 10: 266-274
        • Miura M.
        • Ishide N.
        • Oda H.
        • Sakurai M.
        • Shinozaki T.
        • Takishima T.
        Spatial features of calcium transients during early and delayed afterdepolarizations.
        Am J Physiol. 1993; 265: H439-H444
        • Volders P.G.A.
        • Sipido K.R.
        • Vos M.A.
        • Kulcsar A.
        • Verduyn S.C.
        • Wellens H.J.J.
        Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes.
        Circulation. 1998; 98: 1136-1147
        • De Ferrari G.M.
        • Viola M.
        • D'Amato E.
        • Antolini R.
        • Forti S.
        Distinct patterns of calcium transients during early and delayed afterdepolarizations induced by isoproterenol in ventricular myocytes.
        Circ. 1995; 91: 2510-2515
        • January C.
        • Riddle J.M.
        Early afterdepolarizations: mechanisms of induction and block.
        Circ Res. 1989; 64: 977-990
        • Hirano Y.
        • Moscucci A.
        • January C.T.
        Direct measurement of L type Ca window current in heart cells.
        Circ Res. 1992; 70: 445-455
        • Volders P.G.
        • Vos M.A.
        • Szabo B.
        • et al.
        Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts.
        Cardiol Res. 2000; 46: 376-392
        • Volders P.G.
        • Kulcsar A.
        • Vos M.A.
        • et al.
        Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes.
        Cardiovasc Res. 1997; 34: 348-359
        • Damiano B.P.
        • Rosen M.R.
        Effects of pacing on triggered activity induced by early afterdepolarizations.
        Circulation. 1984; 69: 1013-1025
        • Burashnikov A.
        • Antzelevitch C.
        Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity.
        Circulation. 2003; 107: 2355-2360
        • Huffaker R.
        • Lamp S.T.
        • Weiss J.N.
        • Kogan B.
        Intracellular calcium cycling, early afterdepolarizations, and reentry in simulated long QT syndrome.
        Heart Rhythm. 2004; 1: 441-448
        • Sipido K.R.
        • Callewaert G.
        • Carmeliet E.
        [Ca2+]i transients and [Ca2+]i -dependent chloride current in single Purkinje cells from rabbit heart.
        J Physiol (Lond). 1993; 468: 641-667
        • Papp Z.
        • Sipido K.R.
        • Callewaert G.
        • Carmeliet E.E.
        Two components of Cai activated Cl current during large Cai transients in single rabbit heart Purkinje cells.
        J Physiol. 1995; 483: 319-330
        • Janse M.J.
        • Wit A.L.
        Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction.
        Physiol Rev. 1989; 69: 1049-1169
        • Boyden P.A.
        • Pinto J.M.B.
        Reduced calcium currents in subendocardial Purkinje myocytes that survive in the 24 and 48 hour infarcted heart.
        Circulation. 1994; 89: 2747-2759
        • Friedman P.L.
        • Stewart J.R.
        • Fenoglio Jr, J.J.
        • Wit A.L.
        Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs.
        Circ Res. 1973; 33: 597-611
        • Boyden P.A.
        • Dun W.
        • Barbhaiya C.
        • Ter Keurs H.E.D.J.
        2APB- and JTV519(K201) sensitive micro Ca2+ waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart.
        Heart Rhythm. 2004; 1: 218-226
        • Hirose M.
        • Stuyvers B.D.
        • Dun W.
        • Ter Keurs H.E.D.
        • Boyden P.A.
        Function of Ca2+ release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy.
        Circ Arrhythmia. 2008; 1: 387-395
        • Cerrone M.
        • Colombi B.
        • Santoro M.
        • et al.
        Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor.
        Circ Res. 2005; 96: e77-e82
        • Lehnart S.E.
        • Mongillo M.
        • Bellinger A.
        • et al.
        Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice.
        J Clin Invest. 2008; 118: 2230-2245
        • Knollmann BrC.
        • Chopra N.
        • Hlaing T.
        • et al.
        Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia.
        J Clin Invest. 2006; 116: 2510-2520
        • Song L.
        • Alcalai R.
        • Arad M.
        • et al.
        Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia.
        J Clin Invest. 2007; 117: 1814-1823
        • Maguy A.
        • Le Bouter S.
        • Comtois P.
        • et al.
        Ion channel subunit expression changes in cardiac Purkinje fibers.
        Circ Res. 2009; 104: 1113-1122
        • Aliot E.M.
        • Stevenson W.G.
        • Mendral-Garrote J.M.
        • et al.
        EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias.
        Heart Rhythm. 2009; 6: 886-933
        • Weidmann S.
        Resting and action potentials of cardiac muscle.
        Ann NY Acad Sci. 1957; 65: 663-678