Advertisement

How to perform ventricular tachycardia ablation with a percutaneous left ventricular assist device

Published:February 10, 2012DOI:https://doi.org/10.1016/j.hrthm.2012.02.005
      A majority of patients with structural heart disease and scar-related ventricular tachycardia (VT) have fast, hemodynamically unstable VT.
      • Tanner H.
      • Hindricks G.
      • Volkmer M.
      • et al.
      Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: results of the prospective multicenter Euro-VT-study.
      In fact, up to one-fifth of the patients have only unstable VT, which precludes detailed activation and entrainment mapping.
      • Sacher F.
      • Tedrow U.B.
      • Field M.E.
      • et al.
      Ventricular tachycardia ablation: evolution of patients and procedures over 8 years.
      In addition, even in those with well-tolerated VT, procedural success can be complicated by acute heart failure as a consequence of prolonged episodes of induced VT and intravascular volume expansion; and one consequence of this acute decompensated heart failure is a significant increase in the short-term morbidity and mortality of the procedure.
      • Aliot E.M.
      • Stevenson W.G.
      • Almendral-Garrote J.M.
      • et al.
      EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA).
      • Knight B.P.
      • Jacobson J.T.
      Assessing patients for catheter ablation during hospitalization for acute heart failure.
      In an attempt to maintain organ perfusion (hemodynamic stability) to allow detailed mapping of VT and to minimize postprocedure acute heart failure by unloading the left ventricle (LV), there has been an increased interest in using temporary mechanical cardiac support in the electrophysiology laboratory.

      Keywords

      Abbreviations:

      ACT (activated clotting time), CFA (common femoral artery), EMI (electromagnetic interference), LV (left ventricle/left ventricular), pLVAD (percutaneous left ventricular assist device), RV (right ventricular), VT (ventricular tachycardia)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tanner H.
        • Hindricks G.
        • Volkmer M.
        • et al.
        Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: results of the prospective multicenter Euro-VT-study.
        J Cardiovasc Electrophysiol. 2010; 21: 47-53
        • Sacher F.
        • Tedrow U.B.
        • Field M.E.
        • et al.
        Ventricular tachycardia ablation: evolution of patients and procedures over 8 years.
        Circ Arrhythm Electrophysiol. 2008; 1: 153-161
        • Aliot E.M.
        • Stevenson W.G.
        • Almendral-Garrote J.M.
        • et al.
        EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA).
        Heart Rhythm. 2009; 6: 886-933
        • Knight B.P.
        • Jacobson J.T.
        Assessing patients for catheter ablation during hospitalization for acute heart failure.
        Heart Fail Rev. 2011; 16: 467-476
        • Miller M.A.
        • Dukkipati S.R.
        • Mittnacht A.J.
        • et al.
        Activation and entrainment mapping of hemodynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device.
        J Am Coll Cardiol. 2011; 58: 1363-1371
        • Bunch T.J.
        • Darby A.
        • May H.T.
        • et al.
        Efficacy and safety of ventricular tachycardia ablation with mechanical circulatory support compared with substrate-based ablation techniques.
        Europace. 2011; https://doi.org/10.1093/europace/eur347
        • Naidu S.S.
        Novel percutaneous cardiac assist devices: the science of and indications for hemodynamic support.
        Circulation. 2011; 123: 533-543
        • Levine G.N.
        • Bates E.R.
        • Blankenship J.C.
        • et al.
        2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions.
        J Am Coll Cardiol. 2011; 58: e44-e122
        • Remmelink M.
        • Sjauw K.D.
        • Henriques J.P.
        • et al.
        Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics.
        Catheter Cardiovasc Interv. 2007; 70: 532-537
        • Nakahara S.
        • Tung R.
        • Ramirez R.J.
        • et al.
        Characterization of the arrhythmogenic substrate in ischemic and nonischemic cardiomyopathy implications for catheter ablation of hemodynamically unstable ventricular tachycardia.
        J Am Coll Cardiol. 2010; 55: 2355-2365
        • Carbucicchio C.
        • Santamaria M.
        • Trevisi N.
        • et al.
        Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: short- and long-term outcomes in a prospective single-center study.
        Circulation. 2008; 117: 462-469
        • Smith M.L.
        • Ellenbogen K.A.
        • Beightol L.A.
        • Eckberg D.L.
        Sympathetic neural responses to induced ventricular tachycardia.
        J Am Coll Cardiol. 1991; 18: 1015-1024
        • Pulido J.N.
        • Park S.J.
        • Rihal C.S.
        Percutaneous left ventricular assist devices: clinical uses, future applications, and anesthetic considerations.
        J Cardiothorac Vasc Anesth. 2010; 24: 478-486
        • Chumnanvej S.
        • Wood M.J.
        • MacGillivray T.E.
        • Melo M.F.
        Perioperative echocardiographic examination for ventricular assist device implantation.
        Anesth Analg. 2007; 105: 583-601
        • Dauerman H.L.
        • Applegate R.J.
        • Cohen D.J.
        Vascular closure devices: the second decade.
        J Am Coll Cardiol. 2007; 50: 1617-1626
        • Cockburn J.
        • de Belder A.
        • Brooks M.
        • et al.
        Large calibre arterial access device closure for percutaneous aortic valve interventions: use of the prostar system in 118 cases.
        Catheter Cardiovasc Interv. 2011; 79: 143-149
        • Mahadevan V.S.
        • Jimeno S.
        • Benson L.N.
        • McLaughlin P.R.
        • Horlick E.M.
        Pre-closure of femoral venous access sites used for large-sized sheath insertion with the Perclose device in adults undergoing cardiac intervention.
        Heart. 2008; 94: 571-572
        • Mylonas I.
        • Sakata Y.
        • Salinger M.
        • Sanborn T.A.
        • Feldman T.
        The use of percutaneous suture-mediated closure for the management of 14 French femoral venous access.
        J Invasive Cardiol. 2006; 18: 299-302
        • Della Bella P.
        • Brugada J.
        • Zeppenfeld K.
        • et al.
        Epicardial ablation for ventricular tachycardia: a European multicenter study.
        Circ Arrhythm Electrophysiol. 2011; 4: 653-659
        • Saito S.
        • Nishinaka T.
        Chronic nonpulsatile blood flow is compatible with normal end-organ function: implications for LVAD development.
        J Artif Organs. 2005; 8: 143-148
        • Novak V.
        • Hajjar I.
        The relationship between blood pressure and cognitive function.
        Nat Rev Cardiol. 2010; 7: 686-698
        • Meng L.
        • Cannesson M.
        • Alexander B.S.
        • et al.
        Effect of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients.
        Br J Anaesth. 2011; 107: 209-217
        • Fischer G.W.
        Recent advances in application of cerebral oximetry in adult cardiovascular surgery.
        Semin Cardiothorac Vasc Anesth. 2008; 12: 60-69
        • Highton D.
        • Elwell C.
        • Smith M.
        Noninvasive cerebral oximetry: is there light at the end of the tunnel?.
        Curr Opin Anaesthesiol. 2010; 23: 576-581
        • Thavasothy M.
        • Broadhead M.
        • Elwell C.
        • Peters M.
        • Smith M.
        A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers.
        Anaesthesia. 2002; 57: 999-1006
        • Paquet C.
        • Deschamps A.
        • Denault A.Y.
        • et al.
        Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function.
        J Cardiothorac Vasc Anesth. 2008; 22: 840-846
        • Heringlake M.
        • Garbers C.
        • Kabler J.H.
        • et al.
        Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery.
        Anesthesiology. 2011; 114: 58-69
        • Moritz S.
        • Rochon J.
        • Volkel S.
        • et al.
        Determinants of cerebral oximetry in patients undergoing off-pump coronary artery bypass grafting: an observational study.
        Eur J Anaesthesiol. 2010; 27: 542-549