Advertisement

Bronchial effects of cryoballoon ablation for atrial fibrillation

      Background

      Damage to extracardiac structures, including the esophagus and phrenic nerve, is a known complication of cryoballoon ablation (CBA) during pulmonary vein (PV) isolation for atrial fibrillation (AF). Other adjacent structures, including the pulmonary bronchi and lung parenchyma, may be affected during CBA at the PV ostia.

      Objective

      The purpose of this study was to prospectively study the bronchial effects of CBA in humans undergoing CBA for PV isolation.

      Methods

      Ten patients undergoing CBA for AF under general anesthesia were enrolled in an institutional review board–approved prospective observational study. Real-time bronchoscopy was performed during cryoablation of PVs adjacent to pulmonary bronchi to monitor for thermal injury. Patients were followed for the development of respiratory complaints postprocedure.

      Results

      In 7 of 10 patients (70%) and in 13 of 22 freezes (59%), ice formation was visualized in the left mainstem bronchus during CBA in the left upper PV. Ice formation was not seen in the right mainstem bronchus during right upper PV CBA. The average time to ice formation was 89 seconds. There was no significant difference (P = −.45) in average minimum balloon temperature during freezes with ice formation (−48.5°C) and freezes without ice formation (−46.3°C). No patients went on to develop respiratory complications.

      Conclusion

      Unrecognized ice formation occurs frequently in the left mainstem bronchus during CBA for AF. This information helps explain the source of cough and hemoptysis in some patients who undergo CBA. The long-term consequences of this novel finding and the implications for procedural safety are unknown.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Packer D.L.
        • Kowal R.C.
        • Wheelan K.R.
        • Irwin J.M.
        • Champagne J.
        • Guerra P.G.
        • Dubuc M.
        • Reddy V.
        • Nelson L.
        • Holcomb R.G.
        • Lehmann J.W.
        • Ruskin J.N.
        • STOP AF Cryoablation Investigators
        Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: first results of the North American Arctic Front (STOP AF) pivotal trial.
        . J Am Coll Cardiol. 2013; 61: 1713-1723
        • Wasserlauf J.
        • Pelchovitz D.J.
        • Rhyner J.
        • et al.
        Cryoballoon versus radiofrequency catheter ablation for paroxysmal atrial fibrillation.
        Pacing Clin Electrophysiol. 2015; 38: 483-489
        • Kuck K.H.
        • Brugada J.
        • Furnkranz A.
        • Metzner A.
        • Ouyang F.
        • Chun K.R.
        • Elvan A.
        • Arentz T.
        • Bestehorn K.
        • Pocock S.J.
        • Albenque J.P.
        • Tondo C.
        • FIRE AND ICE Investigators
        Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation.
        N Engl J Med. 2016; 374: 2235-2245
        • Stockigt F.
        • Schrickel J.W.
        • Andrie R.
        • Lickfett L.
        Atrioesophageal fistula after cryoballoon pulmonary vein isolation.
        J Cardiovasc Electrophysiol. 2012; 23: 1254-1257
        • Su W.
        • Kowal R.
        • Kowalski M.
        • Metzner A.
        • Svinarich J.T.
        • Wheelan K.
        • Wang P.
        Best practice guide for cryoballoon ablation in atrial fibrillation: the compilation experience of more than 3000 procedures.
        Heart Rhythm. 2015; 12: 1658-1666
        • Pandya B.
        • Sheikh A.
        • Spagnola J.
        • Bekheit S.
        • Lafferty J.
        • Kowalski M.
        Safety and efficacy of second-generation versus first-generation cryoballoons for treatment of atrial fibrillation: a meta-analysis of current evidence.
        J Interv Card Electrophysiol. 2016; 45: 49-56
        • Li Y.G.
        • Yang M.
        • Li Y.
        • Wang Q.
        • Yu L.
        • Sun J.
        Spatial relationship between left atrial roof or superior pulmonary veins and bronchi or pulmonary arteries by dual-source computed tomography: implication for preventing injury of bronchi and pulmonary arteries during atrial fibrillation ablation.
        Europace. 2011; 13: 809-814
        • Wu M.H.
        • Wongcharoen W.
        • Tsao H.M.
        • Tai C.T.
        • Chang S.L.
        • Lin Y.J.
        • Sheu M.H.
        • Chang C.Y.
        • Chen S.A.
        Close relationship between the bronchi and pulmonary veins: implications for the prevention of atriobronchial fistula after atrial fibrillation ablation.
        J Cardiovasc Electrophysiol. 2007; 18: 1056-1059
        • Kumar N.
        • Timmermans C.
        • Das M.
        • Dassen W.
        • Philippens S.
        • Maessen J.
        • Crijns H.J.
        Hemoptysis after cryoablation for atrial fibrillation: truth or just a myth?.
        Chest. 2014; 146: e173-e175
        • Cuoco F.
        • Sturdivant J.L.
        • Wharton M.J.
        • Gold M.R.
        Delayed formation of an atrial bronchial fistula following cryoballoon ablation for atrial fibrillation. P001-150.
        Heart Rhythm. 2016; 13: S156
        • Marti-Almor J.
        • Jauregui-Abularach M.E.
        • Benito B.
        • Valles E.
        • Bazan V.
        • Sanchez-Font A.
        • Vollmer I.
        • Altaba C.
        • Guijo M.A.
        • Hervas M.
        • Bruguera-Cortada J.
        Pulmonary hemorrhage after cryoballoon ablation for pulmonary vein isolation in the treatment of atrial fibrillation.
        Chest. 2014; 145: 156-157
        • van Opstal J.M.
        • Timmermans C.
        • Blaauw Y.
        • Pison L.
        Bronchial erosion and hemoptysis after pulmonary vein isolation by cryoballoon ablation.
        Heart Rhythm. 2011; 8: 1459
        • Desai A.K.
        • Osahan D.S.
        • Undavia M.B.
        • Nair G.B.
        Bronchial injury post-cryoablation for atrial fibrillation.
        Ann Am Thorac Soc. 2015; 12: 1103-1104
        • Malmborg H.
        • Lonnerholm S.
        • Blomstrom-Lundqvist C.
        Acute and clinical effects of cryoballoon pulmonary vein isolation in patients with symptomatic paroxysmal and persistent atrial fibrillation.
        Europace. 2008; 10: 1277-1280
        • Bhagwandien R.
        • Van Belle Y.
        • de Groot N.
        • Jordaens L.
        Hemoptysis after pulmonary vein isolation with a cryoballoon: an analysis of the potential etiology.
        J Cardiovasc Electrophysiol. 2011; 22: 1067-1069
        • Verma N.
        • Gillespie C.T.
        • Lin A.C.
        • Knight B.P.
        Ice formation in the left mainstem bronchus during cryoballoon ablation for the treatment of atrial fibrillation.
        Heart Rhythm. 2016; 13: 814-815
        • Aryana A.
        • Bowers M.R.
        • Hayatdavoudi S.
        • Zhang Y.
        • Afify A.
        • D’Avila A.
        • O’Neill P.
        Impact of pulmonary vein cryoballoon ablation on bronchial injury.
        J Cardiovasc Electrophysiol. 2016; 27: 861-867
        • Knight B.P.
        • Novak P.G.
        • Sangrigoli R.
        • Champagne J.
        • Dubuc M.
        • Adler S.W.
        • Svinarich T.
        • Essebag V.
        • Jain S.K.
        • John R.M.
        • Mansour M.
        Second generation cryoballoon ablation in paroxysmal atrial fibrillation patients: 12 month safety and efficacy from the STOP-AF post approval study. P001-38.
        Heart Rhythm. 2016; 13: S111
        • Walsh D.A.
        • Maiwand M.O.
        • Nath A.R.
        • Lockwood P.
        • Lloyd M.H.
        • Saab M.
        Bronchoscopic cryotherapy for advanced bronchial carcinoma.
        Thorax. 1990; 45: 509-513
        • Eaton D.
        • Beeson J.
        • Maiwand O.
        • Anikin V.
        Endoluminal cryotherapy in the management of endobronchial metastatic tumors of extrapulmonary origin.
        J Bronchol Interv Pulmonol. 2015; 22: 135-139