Advertisement

The Swiss approach for a heartbeat-driven lead- and batteryless pacemaker

Published:October 15, 2016DOI:https://doi.org/10.1016/j.hrthm.2016.10.016
      Active medical implants play a crucial role in cardiovascular medicine. Their task is to monitor and treat patients with minimal side effects. Furthermore, they are expected to operate autonomously over a long period of time. However, the most common electrical implants, cardiac pacemakers—as all other electrical implants—run on an internal battery that needs to be replaced before its end of life. Typical pacemaker battery life cycles are in the range of 8–10 years
      • Aizawa Y.
      • Kunitomi A.
      • Nakajima K.
      • Kashimura S.
      • Katsumata Y.
      • Nishiyama T.
      • Kimura T.
      • Nishiyama N.
      • Tanimoto Y.
      • Kohsaka S.
      • Takatsuki S.
      • Fukuda K.
      Risk factors for early replacement of cardiovascular implantable electronic devices.
      ; however, they strongly depend on the device type and usage. Therefore, many patients are confronted with repeated surgical interventions
      • Mond H.G.
      • Proclemer A.
      The 11th World Survey of Cardiac Pacing and Implantable Cardioverter-Defibrillators: Calendar Year 2009—a World Society of Arrhythmia’s Project.
      that increase the risk of complications such as infections or bleedings
      • Kirkfeldt R.E.
      • Johansen J.B.
      • Nohr E.A.
      • Jørgensen O.D.
      • Nielsen J.C.
      Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark.
      • Polyzos K.A.
      • Konstantelias A.A.
      • Falagas M.E.
      Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysis.
      • Udo E.O.
      • Zuithoff N.P.A.
      • van Hemel N.M.
      • de Cock C.C.
      • Hendriks T.
      • Doevendans P.A.
      • Moons K.G.M.
      Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study.
      and are costly. Furthermore, the battery accounts for a majority of a pacemaker’s volume and weight. Its large footprint demands locating conventional pacemakers at a remote pectoral implantation site. Moreover, the large battery is responsible for another major limitation: To deliver the electrical stimulus at the pacing site, conventional pacemakers require long leads. They are exposed to continuous mechanical stress and are prone to fracture. Especially for younger patients this is a critical factor.
      • Fortescue E.B.
      • Berul C.I.
      • Cecchin F.
      • Walsh E.P.
      • Triedman J.K.
      • Alexander M.E.
      Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease.
      • Odim J.
      • Suckow B.
      • Saedi B.
      • Laks H.
      • Shannon K.
      Equivalent performance of epicardial versus endocardial permanent pacing in children: a single institution and manufacturer experience.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aizawa Y.
        • Kunitomi A.
        • Nakajima K.
        • Kashimura S.
        • Katsumata Y.
        • Nishiyama T.
        • Kimura T.
        • Nishiyama N.
        • Tanimoto Y.
        • Kohsaka S.
        • Takatsuki S.
        • Fukuda K.
        Risk factors for early replacement of cardiovascular implantable electronic devices.
        Int J Cardiol. 2015; 178: 99-101
        • Mond H.G.
        • Proclemer A.
        The 11th World Survey of Cardiac Pacing and Implantable Cardioverter-Defibrillators: Calendar Year 2009—a World Society of Arrhythmia’s Project.
        Pacing Clin Electrophysiol. 2011; 34: 1013-1027
        • Kirkfeldt R.E.
        • Johansen J.B.
        • Nohr E.A.
        • Jørgensen O.D.
        • Nielsen J.C.
        Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark.
        Eur Heart J. 2014; 35: 1186-1194
        • Polyzos K.A.
        • Konstantelias A.A.
        • Falagas M.E.
        Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysis.
        Europace. 2015; 17: 767-777
        • Udo E.O.
        • Zuithoff N.P.A.
        • van Hemel N.M.
        • de Cock C.C.
        • Hendriks T.
        • Doevendans P.A.
        • Moons K.G.M.
        Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study.
        Heart Rhythm. 2012; 9: 728-735
        • Fortescue E.B.
        • Berul C.I.
        • Cecchin F.
        • Walsh E.P.
        • Triedman J.K.
        • Alexander M.E.
        Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease.
        Heart Rhythm. 2004; 1: 150-159
        • Odim J.
        • Suckow B.
        • Saedi B.
        • Laks H.
        • Shannon K.
        Equivalent performance of epicardial versus endocardial permanent pacing in children: a single institution and manufacturer experience.
        Ann Thorac Surg. 2008; 85: 1412-1416
        • Starner T.
        Human-powered wearable computing.
        IBM Syst J. 1996; 35: 618-629
        • Romero E.
        • Warrington R.O.
        • Neuman M.R.
        Energy scavenging sources for biomedical sensors.
        Physiol Meas. 2009; 30: R35-R62
        • Platt S.R.
        • Farritor S.
        • Garvin K.
        • Haider H.
        The use of piezoelectric ceramics for electric power generation within orthopedic implants.
        IEEE/ASME Trans Mechatron. 2005; 10: 455-461
        • Kerzenmacher S.
        • Ducrée J.
        • Zengerle R.
        • von Stetten F.
        Energy harvesting by implantable abiotically catalyzed glucose fuel cells.
        J Power Sources. 2008; 182: 1-17
        • Haeberlin A.
        • Zurbuchen A.
        • Schaerer J.
        • Wagner J.
        • Walpen S.
        • Huber C.
        • Haeberlin H.
        • Fuhrer J.
        • Vogel R.
        Successful pacing using a batteryless sunlight-powered pacemaker.
        Europace. 2014; 16: 1534-1539
        • Qin Y.
        • Wang X.
        • Wang Z.L.
        Microfibre-nanowire hybrid structure for energy scavenging.
        Nature. 2008; 451: 809-813
        • Wang Z.
        • Leonov V.
        • Fiorini P.
        • Van Hoof C.
        Realization of a wearable miniaturized thermoelectric generator for human body applications.
        Sens Actuators Phys. 2009; 156: 95-102
        • Staehle F.
        • Jung B.A.
        • Bauer S.
        • Leupold J.
        • Bock J.
        • Lorenz R.
        • Föll D.
        • Markl M.
        Three-directional acceleration phase mapping of myocardial function.
        Magn Reson Med. 2011; 65: 1335-1345
        • Pfenniger A.
        • Jonsson M.
        • Zurbuchen A.
        • Koch V.M.
        • Vogel R.
        Energy harvesting from the cardiovascular system, or how to get a little help from yourself.
        Ann Biomed Eng. 2013; 41: 2248-2263
        • Deterre M.
        • Lefeuvre E.
        • Zhu Y.
        • Woytasik M.
        • Boutaud B.
        • Dal Molin R.
        Micro Blood pressure energy harvester for intracardiac pacemaker.
        J Microelectromech Syst. 2014; 23: 651-660
        • Roberts P.
        • Stanley G.
        • Morgan J.M.
        Abstract 2165: harvesting the energy of cardiac motion to power a pacemaker.
        Circulation. 2008; 118: S_679-S_680
        • Karami M.A.
        • Inman D.J.
        Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters.
        Appl Phys Lett. 2012; 100 (42901-042901–42901-042904)
        • Dagdeviren C.
        • Yang B.D.
        • Su Y.
        • et al.
        Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm.
        Proc Natl Acad Sci U S A. 2014; 111: 1927-1932
        • Li H.
        • Tian C.
        • Deng Z.D.
        Energy harvesting from low frequency applications using piezoelectric materials.
        Appl Phys Rev. 2014; 1: 41301
        • Alrashdan M.H.S.
        • Hamzah A.A.
        • Majlis B.
        Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker.
        Microsyst Technol. 2014; 21: 1607-1617
        • Goto H.
        • Sugiura T.
        • Harada Y.
        • Kazui T.
        Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source.
        Med Biol Eng Comput. 1999; 37: 377-380
        • Zurbuchen A.
        • Pfenniger A.
        • Stahel A.
        • Stoeck C.T.
        • Vandenberghe S.
        • Koch V.M.
        • Vogel R.
        Energy harvesting from the beating heart by a mass imbalance oscillation generator.
        Ann Biomed Eng. 2013; 41: 131-141
        • Sasaki K.
        • Osaki Y.
        • Okazaki J.
        • Hosaka H.
        • Itao K.
        Vibration-based automatic power-generation system.
        Microsyst Technol. 2005; 11: 965-969
        • Paradiso J.A.
        • Starner T.
        Energy scavenging for mobile and wireless electronics.
        IEEE Pervasive Comput. 2005; 4: 18-27
        • Xie L.
        • Menet C.G.
        • Ching H.
        • Du R.
        The automatic winding device of a mechanical watch movement and its application in energy harvesting.
        J Mech Des. 2009; 131: 071005
        • Zurbuchen A.
        • Haeberlin A.
        • Pfenniger A.
        • Bereuter L.
        • Schaerer J.
        • Jutzi F.
        • Huber C.
        • Fuhrer J.
        • Vogel R.
        Towards batteryless cardiac implantable electronic devices—the Swiss way.
        IEEE Trans Biomed Circuits Syst. 2016; : 1-9
        • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals
        Guide for the Care and Use of Laboratory Animals.
        8th ed. National Academies Press (US), Washington, DC2011
        • Wong L.S.Y.
        • Hossain S.
        • Ta A.
        • Edvinsson J.
        • Rivas D.H.
        • Naas H.
        A very low-power CMOS mixed-signal IC for implantable pacemaker applications.
        IEEE J Solid-State Circuits. 2004; 39: 2446-2456