Advertisement

Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter

      Background

      Real-time radiofrequency (RF) ablation lesion assessment is a major unmet need in cardiac electrophysiology.

      Objective

      The purpose of this study was to assess whether improved temperature measurement using a novel thermocoupling (TC) technology combined with information derived from impedance change, contact force (CF) sensing, and catheter orientation allows accurate real-time prediction of ablation lesion formation.

      Methods

      RF ablation lesions were delivered in the ventricles of 15 swine using a novel externally irrigated-tip catheter containing 6 miniature TC sensors in addition to force sensing technology. Ablation duration, power, irrigation rate, impedance drop, CF, and temperature from each sensor were recorded. The catheter “orientation factor” was calculated using measurements from the different TC sensors. Information derived from all the sources was included in a mathematical model developed to predict lesion depth and validated against histologic measurements.

      Results

      A total of 143 ablation lesions were delivered to the left ventricle (n = 74) and right ventricle (n = 69). Mean CF applied during the ablations was 14.34 ± 3.55g, and mean impedance drop achieved during the ablations was 17.5 ± 6.41 Ω. Mean difference between predicted and measured ablation lesion depth was 0.72 ± 0.56 mm. In the majority of lesions (91.6%), the difference between estimated and measured depth was ≤1.5 mm.

      Conclusion

      Accurate real-time prediction of RF lesion depth is feasible using a novel ablation catheter-based system in conjunction with a mathematical prediction model, combining elaborate temperature measurements with information derived from catheter orientation, CF sensing, impedance change, and additional ablation parameters.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Collins K.K.
        • Schaffer M.S.
        Use of cryoablation for treatment of tachyarrhythmias in 2010: survey of current practices of pediatric electrophysiologists.
        Pacing Clin Electrophysiol. 2011; 34: 304-308
        • He D.S.
        • Zimmer J.E.
        • Hynynen K.
        • Marcus F.I.
        • Caruso A.C.
        • Lampe L.F.
        • Aguirre M.L.
        Application of ultrasound energy for intracardiac ablation of arrhythmias.
        Eur Heart J. 1995; 16: 961-966
        • Zimmer J.E.
        • Hynynen K.
        • He D.S.
        • Marcus F.
        The feasibility of using ultrasound for cardiac ablation.
        IEEE Trans Biomed Eng. 1995; 42: 891-897
        • Dukkipati S.R.
        • Neuzil P.
        • Skoda J.
        • Petru J.
        • d’Avila A.
        • Doshi S.K.
        • Reddy V.Y.
        Visual balloon-guided point-by-point ablation: reliable, reproducible, and persistent pulmonary vein isolation.
        Circ Arrhythm Electrophysiol. 2010; 3: 266-273
        • Reddy V.Y.
        • Neuzil P.
        • Themistoclakis S.
        • Danik S.B.
        • Bonso A.
        • Rossillo A.
        • Raviele A.
        • Schweikert R.
        • Ernst S.
        • Kuck K.H.
        • Natale A.
        Visually-guided balloon catheter ablation of atrial fibrillation: experimental feasibility and first-in-human multicenter clinical outcome.
        Circulation. 2009; 120: 12-20
        • Aliot E.M.
        • Stevenson W.G.
        • Almendral-Garrote J.M.
        • et al.
        EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA).
        Heart Rhythm. 2009; 6: 886-933
        • Jackman W.M.
        • Beckman K.J.
        • McClelland J.H.
        • Wang X.
        • Friday K.J.
        • Roman C.A.
        • Moulton K.P.
        • Twidale N.
        • Hazlitt H.A.
        • Prior M.I.
        • et al.
        Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction.
        N Engl J Med. 1992; 327: 313-318
        • Arbelo E.
        • Brugada J.
        • Hindricks G.
        • et al.
        The atrial fibrillation ablation pilot study: a European Survey on Methodology and results of catheter ablation for atrial fibrillation conducted by the European Heart Rhythm Association.
        Eur Heart J. 2014; 35: 1466-1478
        • Avitall B.
        • Mughal K.
        • Hare J.
        • Helms R.
        • Krum D.
        The effects of electrode-tissue contact on radiofrequency lesion generation.
        Pacing Clin Electrophysiol. 1997; 20: 2899-2910
        • Dumas Iii J.H.
        • Himel Iv H.D.
        • Kiser A.C.
        • Quint S.R.
        • Knisley S.B.
        Myocardial electrical impedance as a predictor of the quality of RF-induced linear lesions.
        Physiol Measure. 2008; 29: 1195-1207
        • Reichlin T.
        • Knecht S.
        • Lane C.
        • et al.
        Initial impedance decrease as an indicator of good catheter contact: insights from radiofrequency ablation with force sensing catheters.
        Heart Rhythm. 2014; 11: 194-201
        • Thiagalingam A.
        • D’Avila A.
        • Foley L.
        • Guerrero J.L.
        • Lambert H.
        • Leo G.
        • Ruskin J.N.
        • Reddy V.Y.
        Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter.
        J Cardiovasc Electrophysiol. 2010; 21: 806-811
        • Wakili R.
        • Clauss S.
        • Schmidt V.
        • Ulbrich M.
        • Hahnefeld A.
        • Schussler F.
        • Siebermair J.
        • Kaab S.
        • Estner H.L.
        Impact of real-time contact force and impedance measurement in pulmonary vein isolation procedures for treatment of atrial fibrillation.
        Clin Res Cardiol. 2014; 103: 97-106
        • Yokoyama K.
        • Nakagawa H.
        • Shah D.C.
        • Lambert H.
        • Leo G.
        • Aeby N.
        • Ikeda A.
        • Pitha J.V.
        • Sharma T.
        • Lazzara R.
        • Jackman W.M.
        Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus.
        Circ Arrhythm Electrophysiol. 2008; 1: 354-362
        • Kumar S.
        • Haqqani H.M.
        • Chan M.
        • et al.
        Predictive value of impedance changes for real-time contact force measurements during catheter ablation of atrial arrhythmias in humans.
        Heart Rhythm. 2013; 10: 962-969
        • Reddy V.Y.
        • Shah D.
        • Kautzner J.
        • et al.
        The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study.
        Heart Rhythm. 2012; 9: 1789-1795
        • Ullah W.
        • Hunter R.J.
        • Baker V.
        • Dhinoja M.B.
        • Sporton S.
        • Earley M.J.
        • Schilling R.J.
        Target indices for clinical ablation in atrial fibrillation: insights from contact force, electrogram, and biophysical parameter analysis.
        Circ Arrhythm Electrophysiol. 2014; 7: 63-68
        • Bruce G.K.
        • Bunch T.J.
        • Milton M.A.
        • Sarabanda A.
        • Johnson S.B.
        • Packer D.L.
        Discrepancies between catheter tip and tissue temperature in cooled-tip ablation: relevance to guiding left atrial ablation.
        Circulation. 2005; 112: 954-960
        • Nakagawa H.
        • Yamanashi W.S.
        • Pitha J.V.
        • Arruda M.
        • Wang X.
        • Ohtomo K.
        • Beckman K.J.
        • McClelland J.H.
        • Lazzara R.
        • Jackman W.M.
        Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation.
        Circulation. 1995; 91: 2264-2273
        • Petersen H.H.
        • Chen X.
        • Pietersen A.
        • Svendsen J.H.
        • Haunso S.
        Tissue temperatures and lesion size during irrigated tip catheter radiofrequency ablation: an in vitro comparison of temperature-controlled irrigated tip ablation, power-controlled irrigated tip ablation, and standard temperature-controlled ablation.
        Pacing Clin Electrophysiol. 2000; 23: 8-17
        • Wittkampf F.H.
        Temperature response in radiofrequency catheter ablation.
        Circulation. 1992; 86: 1648-1650
        • Perna F.
        • Heist E.K.
        • Danik S.B.
        • Barrett C.D.
        • Ruskin J.N.
        • Mansour M.
        Assessment of catheter tip contact force resulting in cardiac perforation in swine atria using force sensing technology.
        Circ Arrhythm Electrophysiol. 2011; 4: 218-224
        • Knecht S.
        • Reichlin T.
        • Pavlovic N.
        • Schaer B.
        • Osswald S.
        • Sticherling C.
        • Kuhne M.
        Contact force and impedance decrease during ablation depends on catheter location and orientation: insights from pulmonary vein isolation using a contact force-sensing catheter.
        J Interv Card Electrophysiol. 2015; 43: 297-306
        • Chan R.C.
        • Johnson S.B.
        • Seward J.B.
        • Packer D.L.
        The effect of ablation electrode length and catheter tip to endocardial orientation on radiofrequency lesion size in the canine right atrium.
        Pacing Clin Electrophysiol. 2002; 25: 4-13
        • McRury I.D.
        • Whayne J.G.
        • Haines D.E.
        Temperature measurement as a determinant of tissue heating during radiofrequency catheter ablation: an examination of electrode thermistor positioning for measurement accuracy.
        J Cardiovasc Electrophysiol. 1995; 6: 268-278
        • Haverkamp W.
        • Hindricks G.
        • Gulker H.
        • Rissel U.
        • Pfennings W.
        • Borggrefe M.
        • Breithardt G.
        Coagulation of ventricular myocardium using radiofrequency alternating current: bio-physical aspects and experimental findings.
        Pacing Clin Electrophysiol. 1989; 12: 187-195
        • Fleming C.P.
        • Quan K.J.
        • Rollins A.M.
        Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography.
        J Biomed Optics. 2010; 15: 041510
        • Dickfeld T.
        • Kato R.
        • Zviman M.
        • Lai S.
        • Meininger G.
        • Lardo A.C.
        • Roguin A.
        • Blumke D.
        • Berger R.
        • Calkins H.
        • Halperin H.
        Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging.
        J Am Coll Cardiol. 2006; 47: 370-378
        • Lardo A.C.
        • McVeigh E.R.
        • Jumrussirikul P.
        • Berger R.D.
        • Calkins H.
        • Lima J.
        • Halperin H.R.
        Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging.
        Circulation. 2000; 102: 698-705
        • Hoffmann B.A.
        • Koops A.
        • Rostock T.
        • Mullerleile K.
        • Steven D.
        • Karst R.
        • Steinke M.U.
        • Drewitz I.
        • Lund G.
        • Koops S.
        • Adam G.
        • Willems S.
        Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model.
        Eur Heart J. 2010; 31: 450-456
        • Nazarian S.
        • Kolandaivelu A.
        • Zviman M.M.
        • et al.
        Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies.
        Circulation. 2008; 118: 223-229
        • Schmidt E.J.
        • Mallozzi R.P.
        • Thiagalingam A.
        • et al.
        Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking.
        Circ Arrhythm Electrophysiol. 2009; 2: 695-704