Propagation of meandering rotors surrounded by areas of high dominant frequency in persistent atrial fibrillation


      Identification of arrhythmogenic regions remains a challenge in persistent atrial fibrillation (persAF). Frequency and phase analysis allows identification of potential ablation targets.


      This study aimed to investigate the spatiotemporal association between dominant frequency (DF) and reentrant phase activation areas.


      A total of 8 persAF patients undergoing first-time catheter ablation procedure were enrolled. A noncontact array catheter was deployed into the left atrium (LA) and 2048 atrial fibrillation electrograms (AEGs) were acquired for 15 seconds following ventricular far-field cancellation. DF and phase singularity (PS) points were identified from the AEGs and tracked over consecutive frames. The spatiotemporal correlation of high DF areas and PS points was investigated, and the organization index at the core of high-DF areas was compared with that of their periphery.


      The phase maps presented multiple simultaneous PS points that drift over the LA, with preferential locations. Regions displaying higher PS concentration showed a degree of colocalization with DF sites, with PS and DF regions being neighbors in 61.8% and with PS and DF regions overlapping in 36.8% of the time windows. Sites with highest DF showed a greater degree of organization at their core compared with their periphery. After ablation, the PS incidence reduced over the entire LA (36.2% ± 23.2%, P < .05), but especially at the pulmonary veins (78.6% ± 22.2%, P < .05).


      Multiple PS points drifting over the LA were identified with their clusters correlating spatially with the DF regions. After pulmonary vein isolation, the PS’s complexity was reduced, which supports the notion that PS sites represent areas of relevance to the atrial substrate.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Haïssaguerre M.
        • Jaïs P.
        • Shah D.C.
        • Garrigue S.
        • Le Mouroux A.
        • Le Métayer P.
        • Clémenty J.
        Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins.
        N Engl J Med. 1998; 339: 659-666
        • Jalife J.
        • Berenfeld O.
        • Mansour M.
        Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation.
        Cardiovasc Res. 2002; 54: 204-216
        • Moe G.K.
        • Rheinboldt W.C.
        • Abildskov J.A.
        A computer model of atrial fibrillation.
        Am Heart J. 1964; 67: 200-220
        • Brooks A.G.
        • Stiles M.K.
        • Laborderie J.
        • Lau D.H.
        • Kuklik P.
        • Shipp N.J.
        • Hsu L.F.
        • Sanders P.
        Outcomes of long-standing persistent atrial fibrillation ablation: a systematic review.
        Heart Rhythm. 2010; 7: 835-846
        • Atienza F.
        • Almendral J.
        • Jalife J.
        • Zlochiver S.
        • Ploutz-Snyder R.
        • Torrecilla E.G.
        • Arenal A.
        • Kalifa J.
        • Fernández-Avilés F.
        • Berenfeld O.
        Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm.
        Heart Rhythm. 2009; 6: 33-40
        • Salinet J.L.
        • Tuan J.H.
        • Sandilands A.J.
        • Stafford P.J.
        • Schlindwein F.S.
        • Ng G.A.
        Distinctive patterns of dominant frequency trajectory behavior in drug-refractory persistent atrial fibrillation: preliminary characterization of spatiotemporal instability.
        J Cardiovasc Electrophysiol. 2014; 25: 371-379
        • Narayan S.M.
        • Patel J.
        • Mulpuru S.
        • Krummen D.E.
        Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: a video case study.
        Heart Rhythm. 2012; 9: 1436-1439
        • Haïssaguerre M.
        • Hocini M.
        • Denis A.
        • et al.
        Driver domains in persistent atrial fibrillation.
        Circulation. 2014; 130: 530-538
        • Samie F.H.
        • Berenfeld O.
        • Anumonwo J.
        • Mironov S.F.
        • Udassi S.
        • Beaumont J.
        • Taffet S.
        • Pertsov A.M.
        • Jalife J.
        Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation.
        Circ Res. 2001; 89: 1216-1223
        • Umapathy K.
        • Nair K.
        • Masse S.
        • Krishnan S.
        • Rogers J.
        • Nash M.P.
        • Nanthakumar K.
        Phase mapping of cardiac fibrillation.
        Circ Arrhythm Electrophysiol. 2010; 3: 105-114
        • Salinet J.L.
        • Madeiro J.P.V.
        • Cortez P.C.
        • Stafford P.J.
        • Ng G.A.
        • Schlindwein F.S.
        Analysis of QRS-T subtraction in unipolar atrial fibrillation electrograms.
        Med Biol Eng Comput. 2013; 51: 1381-1391
        • Pandit S.V.
        • Jalife J.
        Rotors and the dynamics of cardiac fibrillation.
        Circ Res. 2013; 112: 849-862
        • Rodrigo M.
        • Guillem M.
        • Climent A.M.
        • Pedrón-Torrecilla J.
        • Liberos A.
        • Millet J.
        • Fernández-Avilés F.
        • Atienza F.
        • Berenfeld O.
        Body surface localization of left and right atrial high frequency rotors in atrial fibrillation patients: a clinical-computational study.
        Heart Rhythm. 2014; 11: 1584-1591
        • Haïssaguerre M.
        • Hocini M.
        • Shah A.J.
        • Derval N.
        • Sacher F.
        • Jais P.
        • Dubois R.
        Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report.
        J Cardiovasc Electrophysiol. 2013; 24: 711-717
        • Narayan S.M.
        • Krummen D.E.
        • Shivkumar K.
        • Clopton P.
        • Rappel W.J.
        • Miller J.M.
        Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial.
        J Am Coll Cardiol. 2012; 60: 628-636
        • Berenfeld O.
        • Jalife J.
        Mechanism of atrial fibrillation: rotors, ionic determinants, and excitation frequency.
        Cardiol Clin. 2014; 32: 495-506
        • Hansen B.J.
        • Zhao J.
        • Csepe T.A.
        • et al.
        Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts.
        Eur Heart J. 2015; 36: 2390-2401
        • Hansen B.J.
        • Briggs C.
        • Moore B.T.
        • Csepe T.A.
        • Li N.
        • Zhao J.
        • Garikipati N.V.
        • Janssen P.M.
        • Mohler P.J.
        • Hummel J.D.
        • Fedorov V.V.
        Human atrial fibrillation drivers seen simultaneously by focal impulse and rotor mapping and high-resolution optical mapping.
        Circulation. 2015; 132 (abstract 18402)
        • Gianni C.
        • Mohanty S.
        • Di Biase L.
        • et al.
        Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation.
        Heart Rhythm. 2016; 13: 830-835
        • Buch E.
        • Share M.
        • Tung R.
        • et al.
        Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience.
        Heart Rhythm. 2016; 13: 636-641
        • Kuklik P.
        • Zeemering S.
        • Maesen B.
        • Maessen J.
        • Crijns H.J.
        • Verheule S.
        • Ganesan A.N.
        • Schotten U.
        Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and Hilbert transform.
        IEEE Trans Biomed Eng. 2015; 62: 296-302
        • Mansour M.
        • Mandapati R.
        • Berenfeld O.
        • Chen J.
        • Samie F.H.
        • Jalife J.
        Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart.
        Circulation. 2001; 103: 2631-2636
        • Sahadevan J.
        • Ryu K.
        • Peltz L.
        • Khrestian C.M.
        • Stewart R.W.
        • Markowitz A.H.
        • Waldo A.L.
        Epicardial mapping of chronic atrial fibrillation in patients: preliminary observations.
        Circulation. 2004; 110: 3293-3299
        • Habel N.
        • Znojkiewicz P.
        • Thompson N.
        • et al.
        The temporal variability of dominant frequency and complex fractionated atrial electrograms constrains the validity of sequential mapping in human atrial fibrillation.
        Heart Rhythm. 2010; 7: 586-593
        • Guillem M.S.
        • Climent A.M.
        • Millet J.
        • Arenal Á.
        • Fernández-Avilés F.
        • Jalife J.
        • Atienza F.
        • Berenfeld O.
        Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping.
        Circ Arrhythm Electrophysiol. 2013; 6: 294-301
        • Sanders P.
        • Berenfeld O.
        • Hocini M.
        • et al.
        Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans.
        Circulation. 2005; 112: 789-797
        • Lazar S.
        • Dixit S.
        • Marchlinski F.E.
        • Callans D.J.
        • Gerstenfeld E.P.
        Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans.
        Circulation. 2004; 110: 3181-3186
        • Kalifa J.
        • Tanaka K.
        • Zaitsev A.V.
        • et al.
        Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation.
        Circulation. 2006; 113: 626-633
        • Schilling R.J.
        • Peters N.S.
        • Davies W.
        Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter—comparison of contact and reconstructed electrograms during sinus rhythm.
        Circulation. 1998; 98: 887-898
        • Gornick C.C.
        • Adler S.W.
        • Pederson B.
        • Hauck J.
        • Budd J.
        • Schweitzer J.
        Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium.
        Circulation. 1999; 99: 829-835
        • Lin Y.J.
        • Higa S.
        • Kao T.
        • Tso H.W.
        • Tai C.T.
        • Chang S.L.
        • Lo L.W.
        • Wongcharoen W.
        • Chen S.A.
        Validation of the frequency spectra obtained from the noncontact unipolar electrograms during atrial fibrillation.
        J Cardiovasc Electrophysiol. 2007; 18: 1147-1153
        • Gojraty S.
        • Lavi N.
        • Valles E.
        • Kim S.J.
        • Michele J.
        • Gerstenfeld E.P.
        Dominant frequency mapping of atrial fibrillation: comparison of contact and noncontact approaches.
        J Cardiovasc Electrophysiol. 2009; 20: 997-1004
        • Allessie M.A.
        • Bonke F.I.M.
        • Schopman F.J.G.
        Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle.
        Circ Res. 1977; 41: 9-18
        • Pedrón-Torrecilla J.
        • Rodrigo M.
        • Climent A.M.
        • Liberos A.
        • Pérez-David E.
        • Bermejo J.
        • Arenal Á.
        • Millet J.
        • Fernández-Avilés F.
        • Berenfeld O.
        • Atienza F.
        • Guillem M.S.
        Noninvasive estimation of epicardial dominant high-frequency regions during atrial fibrillation.
        J Cardiovasc Electrophysiol. 2016; 27: 435-442