Advertisement

Phase-contrast magnet resonance imaging reveals regional, transmural, and base-to-apex dispersion of mechanical dysfunction in patients with long QT syndrome

      Background

      Regional dispersion of prolonged repolarization is a hallmark of long QT syndrome (LQTS). We have also revealed regional heterogeneities in mechanical dysfunction in transgenic rabbit models of LQTS.

      Objective

      In this clinical pilot study, we investigated whether patients with LQTS exhibit dispersion of mechanical/diastolic dysfunction.

      Methods

      Nine pediatric patients with genotyped LQTS (12.2 ± 3.3 years) and 9 age- and sex-matched healthy controls (10.6 ± 1.5 years) were subjected to phase-contrast magnetic resonance imaging to analyze radial (Vr) and longitudinal (Vz) myocardial velocities during systole and diastole in the left ventricle (LV) base, mid, and apex. Twelve-lead electrocardiograms were recorded to assess the heart rate–corrected QT (QTc) interval.

      Results

      The QTc interval was longer in patients with LQTS than in controls (469.1 ± 39.4 ms vs 417.8 ± 24.4 ms; P < .01). Patients with LQTS demonstrated prolonged radial and longitudinal time-to-diastolic peak velocities (TTP), a marker for prolonged contraction duration, in the LV base, mid, and apex. The longer QTc interval positively correlated with longer time-to-diastolic peak velocities (correlation coefficient 0.63; P < .01). Peak diastolic velocities were reduced in LQTS in the LV mid and apex, indicating impaired diastolic relaxation. In patients with LQTS, regional (TTPmax-min) and transmural (TTPVz-Vr) dispersion of contraction duration was increased in the LV apex (TTPVz_max-min: 38.9 ± 25.5 ms vs 20.2 ± 14.7 ms; P = .07; TTPVz-Vr: −21.7 ± 14.5 ms vs −8.7 ± 11.3 ms; P < .05). The base-to-apex longitudinal relaxation sequence was reversed in patients with LQTS compared with controls (TTPVz_base-apex: 14.4 ± 14.9 ms vs −10.1 ± 12.7 ms; P < .01).

      Conclusion

      Patients with LQTS exhibit diastolic dysfunction with reduced diastolic velocities and prolonged contraction duration. Mechanical dispersion is increased in LQTS with an increased regional and transmural dispersion of contraction duration and altered apicobasal longitudinal relaxation sequence. LQTS is an electromechanical disorder, and phase-contrast magnetic resonance imaging Heterogeneity in mechanical dysfunction enables a detailed assessment of mechanical consequences of LQTS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roden D.M.
        Long-QT syndrome.
        N Engl J Med. 2008; 358: 169-176
        • Goldenberg I.
        • Moss A.J.
        Long QT syndrome.
        J Am Coll Cardiol. 2008; 51: 2291-2300
        • Antzelevitch C.
        Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes.
        Am J Physiol Heart Circ Physiol. 2008; 148: 825-832
        • Pfeiffer E.R.
        • Tangney J.R.
        • Omens J.H.
        • McCulloch A.D.
        Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.
        J Biomech Eng. 2014; 136: 21007
        • Quinn T.A.
        • Kohl P.
        • Ravens U.
        Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation.
        Prog Biophys Mol Biol. 2014; 115: 71-75
        • Nador F.
        • Beria G.
        • De Ferrari G.M.
        • Stramba-Badiale M.
        • Locati E.H.
        • Lotto A.
        • Schwartz P.J.
        Unsuspected echocardiographic abnormality in the long QT syndrome: diagnostic, prognostic, and pathogenetic implications.
        Circulation. 1991; 84: 1530-1542
        • De Ferrari G.M.
        • Nador F.
        • Beria G.
        • Sala S.
        • Lotto A.
        • Schwartz P.J.
        Effect of calcium channel block on the wall motion abnormality of the idiopathic long QT syndrome.
        Circulation. 1994; 89: 2126-2132
        • Savoye C.
        • Klug D.
        • Denjoy I.
        • Ennezat P.V.
        • Le Tourneau T.
        • Guicheney P.
        • Kacet S.
        Tissue Doppler echocardiography in patients with long QT syndrome.
        Eur J Echocardiogr. 2003; 4: 209-213
        • Ter Bekke R.M.A.
        • Haugaa K.H.
        • Van Den Wijngaard A.
        • Bos J.M.
        • Ackerman M.J.
        • Edvardsen T.
        • Volders P.G.A.
        Electromechanical window negativity in genotyped long-QT syndrome patients: relation to arrhythmia risk.
        Eur Heart J. 2015; 36: 179-186
        • Lang C.N.
        • Menza M.
        • Jochem S.
        • et al.
        Electro-mechanical dysfunction in long QT syndrome: role for arrhythmogenic risk prediction and modulation by sex and sex hormones.
        Prog Biophys Mol Biol. 2016; 120: 255-269
        • Hummel Y.M.
        • Wilde A.A.
        • Voors A.A.
        • Bugatti S.
        • Hillege H.L.
        • van den Berg M.P.
        Ventricular dysfunction in a family with long QT syndrome type 3.
        Europace. 2013; 15: 1516-1521
        • Nakayama K.
        • Yamanari H.
        • Otsuka F.
        • Fukushima K.
        • Saito H.
        • Fujimoto Y.
        • Emori T.
        • Matsubara H.
        • Uchida S.
        • Ohe T.
        Dispersion of regional wall motion abnormality in patients with long QT syndrome.
        Heart. 1998; 80: 245-250
        • Haugaa K.H.
        • Edvardsen T.
        • Leren T.P.
        • Gran J.M.
        • Smiseth O.A.
        • Amlie J.P.
        Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome.
        Eur Heart J. 2009; 30: 330-337
        • Haugaa K.H.
        • Amlie J.P.
        • Berge K.E.
        • Leren T.P.
        • Smiseth O.A.
        • Edvardsen T.
        Transmural differences in myocardial contraction in long-QT syndrome: mechanical consequences of ion channel dysfunction.
        Circulation. 2010; 122: 1355-1363
        • Leren I.S.
        • Hasselberg N.E.
        • Saberniak J.
        • Håland T.F.
        • Kongsgård E.
        • Smiseth O.A.
        • Edvardsen T.
        • Haugaa K.H.
        Cardiac mechanical alterations and genotype specific differences in subjects with long QT Syndrome.
        JACC Cardiovasc Imaging. 2015; 8: 501-510
        • Odening K.E.
        • Jung B.A.
        • Lang C.N.
        • et al.
        Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits.
        Heart Rhythm. 2013; 10: 1533-1541
        • Jung B.
        • Foell D.
        • Boettler P.
        • Petersen S.
        • Hennig J.
        • Markl M.
        Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping.
        J Magn Reson Imaging. 2006; 24: 1033-1039
        • Jung B.
        • Odening K.E.
        • Dall’Armellina E.
        • Föll D.
        • Menza M.
        • Markl M.
        • Schneider J.E.
        A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR.
        J Cardiovasc Magn Reson. 2012; 14: 87
        • Vyas H.
        • O’Leary P.W.
        • Earing M.G.
        • Cetta F.
        • Ackerman M.J.
        Mechanical dysfunction in extreme QT prolongation.
        J Am Soc Echocardiogr. 2008; 21: 2007-2009
        • Bassani R.A.
        Transient outward potassium current and Ca2+ homeostasis in the heart: beyond the action potential.
        Braz J Med Biol Res. 2006; 39: 393-403
        • Malik M.
        • Batchvarov V.N.
        Measurement, interpretation and clinical potential of QT dispersion.
        J Am Coll Cardiol. 2000; 36: 1749-1766
        • Priori S.G.
        • Napolitano C.
        • Diehl L.
        • Schwartz P.J.
        Dispersion of the QT interval: a marker of therapeutic efficacy in the idiopathic long QT syndrome.
        Circulation. 1994; 89: 1681-1689
        • Lombaert H.
        • Peyrat J.M.
        • Croisille P.
        • Rapacchi S.
        • Fanton L.
        • Cheriet F.
        • Clarysse P.
        • Magnin I.
        • Delingette H.
        • Ayache N.
        Human atlas of the cardiac fiber architecture: study on a healthy population.
        IEEE Trans Med Imaging. 2012; 31: 1436-1447
        • Sengupta P.P.
        • Khandheria B.K.
        • Korinek J.
        • Wang J.
        • Jahangir A.
        • Seward J.B.
        • Belohlavek M.
        Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening.
        J Am Coll Cardiol. 2006; 47: 163-172