Second-generation cryoballoon ablation in the setting of left common pulmonary veins: Procedural findings and clinical outcome


      A left common pulmonary vein (LCPV) accounts for the most frequent PV variation. Use of the cryoballoon (CB) for isolating these veins is still debatable. To date, no data are available regarding the feasibility, acute PV isolation, and clinical outcome of the second-generation CB (CB-A) in this setting.


      The purpose of this study was to investigate the performance of the CB-A in patients with LCPVs.


      In a total cohort of 433 patients having undergone CB-A ablation for drug-refractory atrial fibrillation together with preprocedural computed tomographic scanning, 146 patients presented an LCPV. Measurement of ostial area and trunk distance was performed, together with analysis of procedural and fluoroscopic data in order to determine the ablation strategy. The latter 146 LCPV+ patients were compared for outcome with a cohort of 146 propensity-score matched LCPV– patients.


      Electrical isolation could be achieved in all left-sided veins. A long left common trunk (>15 mm) was found in 25% (37/146) of the LCPV+ patients. LCPVs treated with a single-shot freeze strategy presented a longer trunk (22 ± 5 mm vs 9 ± 4 mm, P <.001) and smaller ostial area (305 ± 109 mm2 vs 400 ± 108 mm2, P <.001) compared to LCPV patients in whom a segmental (superior and inferior) freeze was delivered. Survival free from atrial fibrillation was similar between LCPV+ and LCPV– patients during mean follow-up of 19 ± 10 months (log rank P = .33).


      CB-A ablation in LCPV+ patients is effective and showed no difference in clinical outcome compared to LCPV– patients.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Haïssaguerre M.
        • Jaïs P.
        • Shah D.C.
        • Takahashi A.
        • Hocini M.
        • Quiniou G.
        • Garrigue S.
        • Le Mouroux A.
        • Le Métayer P.
        • Clémenty J.
        Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins.
        N Engl J Med. 1998; 339: 659-666
        • Pappone C.
        • Rosanio S.
        • Oreto G.
        • Tocchi M.
        • Gugliotta F.
        • Vicedomini G.
        • Salvati A.
        • Dicandia C.
        • Mazzone P.
        • Santinelli V.
        • Gulletta S.
        • Chierchia S.
        Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation.
        Circulation. 2000; 102: 2619-2628
        • Thorning C.
        • Hamady M.
        • Liaw J.V.
        • Juli C.
        • Lim P.B.
        • Dhawan R.
        • Peters N.S.
        • Davies D.W.
        • Kanagaratnam P.
        • O'Neill M.D.
        • Wright A.R.
        CT evaluation of pulmonary venous anatomy variation in patients undergoing catheter ablation for atrial fibrillation.
        Clin Imaging. 2011; 35: 1-9
        • Jongbloed M.R.
        • Dirksen M.S.
        • Bax J.J.
        • Boersma E.
        • Geleijns K.
        • Lamb H.J.
        • van der Wall E.E.
        • de Roos A.
        • Schalij M.J.
        Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation—initial experience.
        Radiology. 2005; 234: 702-709
        • Kuck K.H.
        • Brugada J.
        • Fürnkranz A.
        • Metzner A.
        • Ouyang F.
        • Chun K.R.
        • Elvan A.
        • Arentz T.
        • Bestehorn K.
        • Pocock S.J.
        • Albenque J.P.
        • Tondo C.
        • FIRE AND ICE Investigators
        Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation.
        N Engl J Med. 2016; 374: 2235-2245
        • Andrade J.G.
        • Khairy P.
        • Guerra P.G.
        • Deyell M.W.
        • Rivard L.
        • Macle L.
        • Thibault B.
        • Talajic M.
        • Roy D.
        • Dubuc M.
        Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies.
        Heart Rhythm. 2011; 8: 1444-1451
        • Kubala M.
        • Hermida J.S.
        • Nadji G.
        • Quenum S.
        • Traulle S.
        • Jarry G.
        Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein.
        Pacing Clin Electrophysiol. 2011 Jul; 34: 837-843
        • Di Giovanni G.
        • Wauters K.
        • Chierchia G.B.
        • et al.
        One-year follow-up after single procedure cryoballoon ablation: a comparison between the first and second generation balloon.
        J Cardiovasc Electrophysiol. 2014; 25: 834-839
        • Metzner A.
        • Reissmann B.
        • Rausch P.
        • et al.
        One-year clinical outcome after pulmonary vein isolation using the second-generation 28-mm cryoballoon.
        Circ Arrhythm Electrophysiol. 2014; 7: 288-292
        • Cabrera J.A.
        • Ho S.Y.
        • Climent V.
        • Sanchez-Quintana D.
        The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation.
        Eur Heart J. 2008; 29: 356-362
        • Ströker E.
        • de Asmundis C.
        • Saitoh Y.
        • Velagić V.
        • Mugnai G.
        • Irfan G.
        • Hünük B.
        • Tanaka K.
        • Belsack D.
        • Buyl R.
        • Brugada P.
        • Chierchia G.B.
        Anatomic predictors of phrenic nerve injury in the setting of pulmonary vein isolation using the 28-mm second-generation cryoballoon.
        Heart Rhythm. 2016; 13: 342-351
        • Irfan G.
        • de Asmundis C.
        • Mugnai G.
        • et al.
        One-year follow-up after second-generation cryoballoon ablation for atrial fibrillation in a large cohort of patients: a single-centre experience.
        Europace. 2016; 18: 987-993
        • Ghosh J.
        • Singarayar S.
        • Kabunga P.
        • McGuire M.A.
        Subclavian vein pacing and venous pressure waveform measurement for phrenic nerve monitoring during cryoballoon ablation of atrial fibrillation.
        Europace. 2015; 17: 884-890
        • McLellan A.J.
        • Ling L.H.
        • Ruggiero D.
        • Wong M.C.
        • Walters T.E.
        • Nisbet A.
        • Shetty A.K.
        • Azzopardi S.
        • Taylor A.J.
        • Morton J.B.
        • Kalman J.M.
        • Kistler P.M.
        Pulmonary vein isolation: the impact of pulmonary venous anatomy on long-term outcome of catheter ablation for paroxysmal atrial fibrillation.
        Heart Rhythm. 2014; 11: 549-556
        • Iacopino S.
        • Mugnai G.
        • Takarada K.
        • Paparella G.
        • Ströker E.
        • De Regibus V.
        • Coutino-Moreno H.E.
        • Choudhury R.
        • Abugattas de Torres J.P.
        • Brugada P.
        • de Asmundis C.
        • Chierchia G.B.
        Second-generation cryoballoon ablation without the use of real-time recordings: a novel strategy based on a temperature-guided approach to ablation.
        Heart Rhythm. 2017; 14: 322-328
        • Kenigsberg D.N.
        • Martin N.
        • Lim H.W.
        • Kowalski M.
        • Ellenbogen K.A.
        Quantification of the cryoablation zone demarcated by pre- and postprocedural electroanatomic mapping in patients with atrial fibrillation using the 28-mm second-generation cryoballoon.
        Heart Rhythm. 2015; 12: 283-290