Advertisement

The evolving role of ankyrin-B in cardiovascular disease

  • Sara N. Koenig
    Correspondence
    Address reprint requests and correspondence: Dr Sara N. Koenig, Dorothy M. Davis Heart & Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, 333 W 10th Avenue, Graves Hall 5152, Columbus, OH 43210.
    Affiliations
    Dorothy M. Davis Heart & Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio
    Search for articles by this author
  • Peter J. Mohler
    Affiliations
    Dorothy M. Davis Heart & Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio
    Search for articles by this author
      Over the past decade, ankyrin-B has been identified as a prominent player in cardiac physiology. Ankyrin-B has a multitude of functions, with roles in expression, localization, and regulation of proteins critical for cardiac excitability, cytoskeletal integrity, and signaling. Furthermore, human ANK2 variants that result in ankyrin-B loss of function are associated with “ankyrin-B syndrome,” a complex cardiac phenotype that may include bradycardia and heart rate variability, conduction block, atrial fibrillation, QT interval prolongation, and potentially fatal catecholaminergic polymorphic ventricular tachycardia. However, our understanding of the molecular mechanisms underlying ankyrin-B function at baseline and in disease is still not fully developed owing to the complexity of ankyrin-B gene regulation, number of ankyrin-B–associated molecules, multiple roles of ankyrin-B in the heart and other organs that modulate cardiac function, and a host of unexpected clinical phenotypes. In this review, we summarize known roles of ankyrin-B in the heart and the impact of ankyrin-B dysfunction in animal models and in human disease as well as highlight important new findings illustrating the complexity of ankyrin-B signaling.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gallagher P.G.
        • Forget B.G.
        An alternate promoter directs expression of a truncated, muscle-specific isoform of the human ankyrin 1 gene.
        J Biol Chem. 1998; 273: 1339-1348
        • Curran J.
        • Mohler P.J.
        Coordinating electrical activity of the heart: ankyrin polypeptides in human cardiac disease.
        Expert Opin Ther Targets. 2011; 15: 789-801
        • Mohler P.J.
        • Rivolta I.
        • Napolitano C.
        • LeMaillet G.
        • Lambert S.
        • Priori S.G.
        • Bennett V.
        Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.
        Proc Natl Acad Sci U S A. 2004; 101: 17533-17538
        • Lowe J.S.
        • Palygin O.
        • Bhasin N.
        • Hund T.J.
        • Boyden P.A.
        • Shibata E.
        • Anderson M.E.
        • Mohler P.J.
        Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway.
        J Cell Biol. 2008; 180: 173-186
        • Bers D.M.
        Cardiac excitation-contraction coupling.
        Nature. 2002; 415: 198-205
        • Bassani J.W.
        • Bassani R.A.
        • Bers D.M.
        Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
        J Physiol. 1994; 476: 279-293
        • Luo C.H.
        • Rudy Y.
        A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes.
        Circ Res. 1994; 74: 1071-1096
        • Bardou A.L.
        • Auger P.M.
        • Birkui P.J.
        • Chasse J.L.
        Modeling of cardiac electrophysiological mechanisms: from action potential genesis to its propagation in myocardium.
        Crit Rev Biomed Eng. 1996; 24: 141-221
        • Cunha S.R.
        • Bhasin N.
        • Mohler P.J.
        Targeting and stability of Na/Ca exchanger 1 in cardiomyocytes requires direct interaction with the membrane adaptor ankyrin-B.
        J Biol Chem. 2007; 282: 4875-4883
        • Li Z.P.
        • Burke E.P.
        • Frank J.S.
        • Bennett V.
        • Philipson K.D.
        The cardiac Na+-Ca2+ exchanger binds to the cytoskeletal protein ankyrin.
        J Biol Chem. 1993; 268: 11489-11491
        • Li J.
        • Kline C.F.
        • Hund T.J.
        • Anderson M.E.
        • Mohler P.J.
        Ankyrin-B regulates Kir6.2 membrane expression and function in heart.
        J Biol Chem. 2010; 285: 28723-28730
        • Cunha S.R.
        • Hund T.J.
        • Hashemi S.
        • et al.
        Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation.
        Circulation. 2011; 124: 1212-1222
        • Kline C.F.
        • Scott J.
        • Curran J.
        • Hund T.J.
        • Mohler P.J.
        Ankyrin-B regulates Cav2.1 and Cav2.2 channel expression and targeting.
        J Biol Chem. 2014; 289: 5285-5295
        • Mohler P.J.
        • Splawski I.
        • Napolitano C.
        • Bottelli G.
        • Sharpe L.
        • Timothy K.
        • Priori S.G.
        • Keating M.T.
        • Bennett V.
        A cardiac arrhythmia syndrome caused by loss of ankyrin-B function.
        Proc Natl Acad Sci U S A. 2004; 101: 9137-9142
        • Kline C.F.
        • Cunha S.R.
        • Lowe J.S.
        • Hund T.J.
        • Mohler P.J.
        Revisiting ankyrin-InsP3 receptor interactions: ankyrin-B associates with the cytoplasmic N-terminus of the InsP3 receptor.
        J Cell Biochem. 2008; 104: 1244-1253
        • Mohler P.J.
        • Davis J.Q.
        • Davis L.H.
        • Hoffman J.A.
        • Michaely P.
        • Bennett V.
        Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B.
        J Biol Chem. 2004; 279: 12980-12987
        • Mohler P.J.
        • Yoon W.
        • Bennett V.
        Ankyrin-B targets β2-spectrin to an intracellular compartment in neonatal cardiomyocytes.
        J Biol Chem. 2004; 279: 40185-40193
        • Bhasin N.
        • Cunha S.R.
        • Mudannayake M.
        • Gigena M.S.
        • Rogers T.B.
        • Mohler P.J.
        Molecular basis for PP2A regulatory subunit B56α targeting in cardiomyocytes.
        Am J Physiol Heart Circ Physiol. 2007; 293: H109-H119
        • Abdi K.M.
        • Mohler P.J.
        • Davis J.Q.
        • Bennett V.
        Isoform specificity of ankyrin-B: a site in the divergent C-terminal domain is required for intramolecular association.
        J Biol Chem. 2006; 281: 5741-5749
        • Mohler P.J.
        • Gramolini A.O.
        • Bennett V.
        The ankyrin-B C-terminal domain determines activity of ankyrin-B/G chimeras in rescue of abnormal inositol 1,4,5-trisphosphate and ryanodine receptor distribution in ankyrin-B (−/−) neonatal cardiomyocytes.
        J Biol Chem. 2002; 277: 10599-10607
        • Tuvia S.
        • Buhusi M.
        • Davis L.
        • Reedy M.
        • Bennett V.
        Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins.
        J Cell Biol. 1999; 147: 995-1008
        • Mohler P.J.
        • Schott J.J.
        • Gramolini A.O.
        • et al.
        Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death.
        Nature. 2003; 421: 634-639
        • Liu X.
        • Spicarova Z.
        • Rydholm S.
        • Li J.
        • Brismar H.
        • Aperia A.
        Ankyrin B modulates the function of Na,K-ATPase/inositol 1,4,5-trisphosphate receptor signaling microdomain.
        J Biol Chem. 2008; 283: 11461-11468
        • Gudmundsson H.
        • Hund T.J.
        • Wright P.J.
        • et al.
        EH domain proteins regulate cardiac membrane protein targeting.
        Circ Res. 2010; 107: 84-95
        • Curran J.
        • Makara M.A.
        • Little S.C.
        • et al.
        EHD3-dependent endosome pathway regulates cardiac membrane excitability and physiology.
        Circ Res. 2014; 115: 68-78
        • Camors E.
        • Mohler P.J.
        • Bers D.M.
        • Despa S.
        Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity.
        J Mol Cell Cardiol. 2012; 52: 1240-1248
        • DeGrande S.
        • Nixon D.
        • Koval O.
        • et al.
        CaMKII inhibition rescues proarrhythmic phenotypes in the model of human ankyrin-B syndrome.
        Heart Rhythm. 2012; 9: 2034-2041
        • Voigt N.
        • Li N.
        • Wang Q.
        • Wang W.
        • Trafford A.W.
        • Abu-Taha I.
        • Sun Q.
        • Wieland T.
        • Ravens U.
        • Nattel S.
        • Wehrens X.H.
        • Dobrev D.
        Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation.
        Circulation. 2012; 125: 2059-2070
        • Voigt N.
        • Heijman J.
        • Wang Q.
        • Chiang D.Y.
        • Li N.
        • Karck M.
        • Wehrens X.H.
        • Nattel S.
        • Dobrev D.
        Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation.
        Circulation. 2014; 129: 145-156
        • Popescu I.
        • Galice S.
        • Mohler P.J.
        • Despa S.
        Elevated local [Ca2+] and CaMKII promote spontaneous Ca2+ release in ankyrin-B-deficient hearts.
        Cardiovasc Res. 2016; 111: 287-294
        • Landstrom A.P.
        • Dobrev D.
        • Wehrens X.H.T.
        Calcium signaling and cardiac arrhythmias.
        Circ Res. 2017; 120: 1969-1993
        • Wolf R.M.
        • Glynn P.
        • Hashemi S.
        • Zarei K.
        • Mitchell C.C.
        • Anderson M.E.
        • Mohler P.J.
        • Hund T.J.
        Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis.
        Am J Physiol Heart Circ Physiol. 2013; 304: H1253-H1266
        • Curran J.
        • Musa H.
        • Kline C.F.
        • Makara M.A.
        • Little S.C.
        • Higgins J.D.
        • Hund T.J.
        • Band H.
        • Mohler P.J.
        Eps15 homology domain-containing protein 3 regulates cardiac T-type Ca2+ channel targeting and function in the atria.
        J Biol Chem. 2015; 290: 12210-12221
        • Le Scouarnec S.
        • Bhasin N.
        • Vieyres C.
        • et al.
        Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.
        Proc Natl Acad Sci U S A. 2008; 105: 15617-15622
        • Glukhov A.V.
        • Fedorov V.V.
        • Anderson M.E.
        • Mohler P.J.
        • Efimov I.R.
        Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice.
        Am J Physiol Heart Circ Physiol. 2010; 299: H482-H491
        • Schott J.J.
        • Charpentier F.
        • Peltier S.
        • et al.
        Mapping of a gene for long QT syndrome to chromosome 4q25-27.
        Am J Hum Genet. 1995; 57: 1114-1122
        • Mohler P.J.
        • Davis J.Q.
        • Bennett V.
        Ankyrin-b coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain.
        PLoS Biol. 2005; 3: e423
        • Swayne L.A.
        • Murphy N.P.
        • Asuri S.
        • et al.
        Novel variant in the ANK2 membrane-binding domain is associated with ankyrin-B syndrome and structural heart disease in a first nations population with a high rate of long QT syndrome.
        Circ Cardiovasc Genet. 2017; 10: e001698
        • Smith S.A.
        • Sturm A.C.
        • Curran J.
        • et al.
        Dysfunction in the βII spectrin-dependent cytoskeleton underlies human arrhythmia.
        Circulation. 2015; 131: 695-708
        • Mohler P.J.
        • Le Scouarnec S.
        • Denjoy I.
        • et al.
        Defining the cellular phenotype of “ankyrin-B syndrome” variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes.
        Circulation. 2007; 115: 432-441
        • Ichikawa M.
        • Aiba T.
        • Ohno S.
        • et al.
        Phenotypic variability of ANK2 mutations in patients with inherited primary arrhythmia syndromes.
        Circ J. 2016; 80: 2435-2442
        • Sherman J.
        • Tester D.J.
        • Ackerman M.J.
        Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects.
        Heart Rhythm. 2005; 2: 1218-1223
        • Ayalon G.
        • Hostettler J.D.
        • Hoffman J.
        • Kizhatil K.
        • Davis J.Q.
        • Bennett V.
        Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury.
        J Biol Chem. 2011; 286: 7370-7378
        • Kizhatil K.
        • Yoon W.
        • Mohler P.J.
        • Davis L.H.
        • Hoffman J.A.
        • Bennett V.
        Ankyrin-G and β2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells.
        J Biol Chem. 2007; 282: 2029-2037
        • Wang C.
        • Yu C.
        • Ye F.
        • Wei Z.
        • Zhang M.
        Structure of the ZU5-ZU5-UPA-DD tandem of ankyrin-B reveals interaction surfaces necessary for ankyrin function.
        Proc Natl Acad Sci U S A. 2012; 109: 4822-4827
        • Sedlacek K.
        • Stark K.
        • Cunha S.R.
        • Pfeufer A.
        • Weber S.
        • Berger I.
        • Perz S.
        • Kaab S.
        • Wichmann H.E.
        • Mohler P.J.
        • Hengstenberg C.
        • Jeron A.
        Common genetic variants in ANK2 modulate QT interval: results from the KORA study.
        Circ Cardiovasc Genet. 2008; 1: 93-99
        • Musa H.
        • Murphy N.P.
        • Curran J.
        • et al.
        Common human ANK2 variant confers in vivo arrhythmia phenotypes.
        Heart Rhythm. 2016; 13: 1932-1940
        • Lopes L.R.
        • Syrris P.
        • Guttmann O.P.
        • O'Mahony C.
        • Tang H.C.
        • Dalageorgou C.
        • Jenkins S.
        • Hubank M.
        • Monserrat L.
        • McKenna W.J.
        • Plagnol V.
        • Elliott P.M.
        Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy.
        Heart. 2015; 101: 294-301
        • Hund T.J.
        • Wright P.J.
        • Dun W.
        • Snyder J.S.
        • Boyden P.A.
        • Mohler P.J.
        Regulation of the ankyrin-B-based targeting pathway following myocardial infarction.
        Cardiovasc Res. 2009; 81: 742-749
        • Kashef F.
        • Li J.
        • Wright P.
        • Snyder J.
        • Suliman F.
        • Kilic A.
        • Higgins R.S.
        • Anderson M.E.
        • Binkley P.F.
        • Hund T.J.
        • Mohler P.J.
        Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection.
        J Biol Chem. 2012; 287: 30268-30281
        • Mohler P.J.
        • Hoffman J.A.
        • Davis J.Q.
        • Abdi K.M.
        • Kim C.R.
        • Jones S.K.
        • Davis L.H.
        • Roberts K.F.
        • Bennett V.
        Isoform specificity among ankyrins: an amphipathic α-helix in the divergent regulatory domain of ankyrin-B interacts with the molecular co-chaperone Hdj1/Hsp40.
        J Biol Chem. 2004; 279: 25798-25804
        • Cunha S.R.
        • Le Scouarnec S.
        • Schott J.J.
        • Mohler P.J.
        Exon organization and novel alternative splicing of the human ANK2 gene: implications for cardiac function and human cardiac disease.
        J Mol Cell Cardiol. 2008; 45: 724-734
        • Wu H.C.
        • Yamankurt G.
        • Luo J.
        • Subramaniam J.
        • Hashmi S.S.
        • Hu H.
        • Cunha S.R.
        Identification and characterization of two ankyrin-B isoforms in mammalian heart.
        Cardiovasc Res. 2015; 107: 466-477
        • Cunha S.R.
        • Mohler P.J.
        Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line.
        J Biol Chem. 2008; 283: 31968-31980
        • He M.
        • Tseng W.C.
        • Bennett V.
        A single divergent exon inhibits ankyrin-B association with the plasma membrane.
        J Biol Chem. 2013; 288: 14769-14779
        • Cooper D.N.
        • Krawczak M.
        • Polychronakos C.
        • Tyler-Smith C.
        • Kehrer-Sawatzki H.
        Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease.
        Hum Genet. 2013; 132: 1077-1130
        • Genin E.
        • Feingold J.
        • Clerget-Darpoux F.
        Identifying modifier genes of monogenic disease: strategies and difficulties.
        Hum Genet. 2008; 124: 357-368
        • Haldane J.B.S.
        The relative importance of principal and modifying genes in determining some human diseases.
        J Genet. 1941; 41: 149-157
        • Ding Y.
        • Long P.A.
        • Bos J.M.
        • et al.
        A modifier screen identifies dnajb6 as a cardiomyopathy susceptibility gene.
        JCI Insight. 2016; 1: e88797
        • Li Y.
        • Klena N.T.
        • Gabriel G.C.
        • et al.
        Global genetic analysis in mice unveils central role for cilia in congenital heart disease.
        Nature. 2015; 521: 520-524
        • Kline C.F.
        • Kurata H.T.
        • Hund T.J.
        • Cunha S.R.
        • Koval O.M.
        • Wright P.J.
        • Christensen M.
        • Anderson M.E.
        • Nichols C.G.
        • Mohler P.J.
        Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.
        Proc Natl Acad Sci U S A. 2009; 106: 16669-16674
        • Healy J.A.
        • Nilsson K.R.
        • Hohmeier H.E.
        • Berglund J.
        • Davis J.
        • Hoffman J.
        • Kohler M.
        • Li L.S.
        • Berggren P.O.
        • Newgard C.B.
        • Bennett V.
        Cholinergic augmentation of insulin release requires ankyrin-B.
        Sci Signal. 2010; 3: ra19
        • Hesson L.B.
        • Ng B.
        • Zarzour P.
        • et al.
        Integrated genetic, epigenetic, and transcriptional profiling identifies molecular pathways in the development of laterally spreading tumors.
        Mol Cancer Res. 2016; 14: 1217-1228
        • Scotland P.
        • Zhou D.
        • Benveniste H.
        • Bennett V.
        Nervous system defects of ankyrinB (−/−) mice suggest functional overlap between the cell adhesion molecule L1 and 440-kD ankyrinB in premyelinated axons.
        J Cell Biol. 1998; 143: 1305-1315
        • Patzke C.
        • Acuna C.
        • Giam L.R.
        • Wernig M.
        • Sudhof T.C.
        Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation.
        J Exp Med. 2016; 213: 499-515
        • Ratnapriya R.
        • Satishchandra P.
        • Dilip S.
        • Gadre G.
        • Anand A.
        Familial autosomal dominant reflex epilepsy triggered by hot water maps to 4q24-q28.
        Hum Genet. 2009; 126: 677-683
        • Hata Y.
        • Yoshida K.
        • Kinoshita K.
        • Nishida N.
        Epilepsy-related sudden unexpected death: targeted molecular analysis of inherited heart disease genes using next-generation DNA sequencing.
        Brain Pathol. 2017; 27: 292-304
        • Kordeli E.
        • Lambert S.
        • Bennett V.
        Ankyring: a new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of ranvier.
        J Biol Chem. 1995; 270: 2352-2359
        • Chan W.
        • Kordeli E.
        • Bennett V.
        440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons.
        J Cell Biol. 1993; 123: 1463-1473
        • Jegla T.
        • Nguyen M.M.
        • Feng C.
        • Goetschius D.J.
        • Luna E.
        • van Rossum D.B.
        • Kamel B.
        • Pisupati A.
        • Milner E.S.
        • Rolls M.M.
        Bilaterian giant ankyrins have a common evolutionary origin and play a conserved role in patterning the axon initial segment.
        PLoS Genet. 2016; 12: e1006457
        • Koch I.
        • Schwarz H.
        • Beuchle D.
        • Goellner B.
        • Langegger M.
        • Aberle H.
        Drosophila ankyrin 2 is required for synaptic stability.
        Neuron. 2008; 58: 210-222
        • Hortsch M.
        • Paisley K.L.
        • Tian M.Z.
        • Qian M.
        • Bouley M.
        • Chandler R.
        The axonal localization of large Drosophila ankyrin2 protein isoforms is essential for neuronal functionality.
        Mol Cell Neurosci. 2002; 20: 43-55
        • Tseng W.C.
        • Jenkins P.M.
        • Tanaka M.
        • Mooney R.
        • Bennett V.
        Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors.
        Proc Natl Acad Sci U S A. 2015; 112: 1214-1219