Advertisement

Transcatheter/leadless pacing

Published:December 08, 2017DOI:https://doi.org/10.1016/j.hrthm.2017.12.004
      Entirely self-contained cardiac pacing systems for direct implantation within the heart via deflectable catheter are now available for use in humans. Worldwide, there have been more 7000 implants of the “transcatheter” or “leadless” pacemaker.
      The terms “leadless” and “transcatheter” are parts of trademarked labels used in the currently available pacing systems discussed. In this article, these terms will be used interchangeably and do not indicate a specific manufacturer.
      The concept of these pacing systems is far from new; Spickler et al.
      • Spickler J.W.
      • Rasor N.S.
      • Kezdi P.
      • Misra S.N.
      • Robins K.E.
      • LeBoeuf C.
      Totally self-contained intracardiac pacemaker.
      were able to achieve cardiac pacing in animals using a capsular nuclear-powered system in 1970. However, only recently has technology enabled sufficient miniaturization to make transcatheter pacing feasible.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spickler J.W.
        • Rasor N.S.
        • Kezdi P.
        • Misra S.N.
        • Robins K.E.
        • LeBoeuf C.
        Totally self-contained intracardiac pacemaker.
        J Electrocardiol. 1970; 3: 325-331
        • Reynolds D.
        • Duray G.Z.
        • Omar R.
        • et al.
        A leadless intracardiac transcatheter pacing system.
        N Engl J Med. 2016; 374: 533-541
        • Reddy V.Y.
        • Exner D.V.
        • Cantillon D.J.
        • et al.
        Percutaneous implantation of an entirely intracardiac leadless pacemaker.
        N Engl J Med. 2015; 373: 1125-1135
        • Roberts P.R.
        • Clementy N.
        • Al Samadi F.
        • et al.
        A leadless pacemaker in the real-world setting: the Micra Transcatheter Pacing System Post-Approval Registry.
        Heart Rhythm. 2017; 14: 1375-1379
        • Tanaka-Esposito C.C.
        • Chung M.K.
        • Abraham J.M.
        • Cantillon D.J.
        • Abi-Saleh B.
        • Tchou P.J.
        Real-time ultrasound guidance reduces total and major vascular complications in patients undergoing pulmonary vein antral isolation on therapeutic warfarin.
        J Interv Card Electrophysiol. 2013; 37: 163-168
        • Piccini J.P.
        • Stromberg K.
        • Jackson K.P.
        • et al.
        Long-term outcomes in leadless Micra transcatheter pacemakers with elevated thresholds at implantation: results from the Micra TPS Global Clinical Trial.
        Heart Rhythm. 2017; 14: 685-691
        • Lloyd M.
        • Reynolds D.
        • Sheldon T.
        • Stromberg K.
        • Hudnall J.H.
        • Demmer W.M.
        • Omar R.
        • Ritter P.
        • Hummel J.
        • Mont L.
        • Steinwender C.
        • Duray G.Z.
        Rate adaptive pacing in an intracardiac pacemaker.
        Heart Rhythm. 2017; 14: 200-205
        • Cilingiroglu M.
        • Salinger M.
        • Zhao D.
        • Feldman T.
        Technique of temporary subcutaneous “figure-of-eight” sutures to achieve hemostasis after removal of large-caliber femoral venous sheaths.
        Catheter Cardiovasc Interv. 2011; 78: 155-160
        • Koruth J.S.
        • Rippy M.K.
        • Khairkhahan A.
        • Ligon D.A.
        • Hubbard C.A.
        • Miller M.A.
        • Dukkipati S.
        • Neuzil P.
        • Reddy V.Y.
        Percutaneous retrieval of implanted leadless pacemakers.
        JACC Clin Electrophysiol. 2015; 1: 563-570
        • Kella D.
        • Bhatia N.
        • ElChami M.
        • Lloyd M.
        AV node ablation and pacemaker implantation using a single femoral puncture site: the initial clinical experience with the MICRA pacemaker.
        Europace. 2016; 18: i171