Advertisement

The pathophysiology of the vasovagal response

Published:December 12, 2017DOI:https://doi.org/10.1016/j.hrthm.2017.12.013
      In part I of this study, we found that the classical studies on vasovagal syncope, conducted in fit young subjects, overstated vasodilatation as the dominant hypotensive mechanism. Since 1980, blood pressure and cardiac output have been measured continuously using noninvasive methods during tilt, mainly in patients with recurrent syncope, including women and the elderly. This has allowed us to analyze in more detail the complex sequence of hemodynamic changes leading up to syncope in the laboratory. All tilt-sensitive patients appear to progress through 4 phases: (1) early stabilization, (2) circulatory instability, (3) terminal hypotension, and (4) recovery. The physiology responsible for each phase is discussed. Although the order of phases is consistent, the time spent in each phase may vary. In teenagers and young adults, progressive hypotension during phases 2 and 3 can be driven by vasodilatation or falling cardiac output. The fall in cardiac output is secondary to a progressive decrease in stroke volume because blood is pooled in the splanchnic veins. In adults a fall in cardiac output is the dominant hypotensive mechanism because systemic vascular resistance always remains above baseline levels.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wieling W.
        • Jardine D.
        • de Lange F.
        • Brignole M.
        • Nielsen H.
        • Stewart J.
        • Sutton R.
        Cardiac output and vasodilatation in the vasovagal response: an analysis of the classical papers.
        Heart Rhythm. 2016; 13: 798-805
        • Westerhof B.E.
        • Settels J.J.
        • Bos W.J.
        • Karemaker J.M.
        • Wieling W.
        • van Montfrans G.A.
        • van Lieshout J.J.
        Bridging cardiovascular physics, physiology, and clinical practice: Karel Wesseling, pioneer of continuous noninvasive hemodynamic monitoring.
        Am J Physiol Heart Circ Physiol. 2015; 308: H153-H156
        • Stewart J.M.
        • McLoed K.J.
        • Sanyal S.
        • Hezberg G.
        • Montglomery L.D.
        Relation of postural vasovagal syncope to splanchnic hypervolemia in adolescents.
        Circulation. 2004; 110: 2575-2581
        • Wallin G.
        Sympathetic outflow to muscles during vasovagal syncope.
        J Auton Nerv Syst. 1982; 6: 287-291
        • El-Bedawai K.
        • Hainsworth R.
        Combined tilt and lower body suction: a test of orthostatic tolerance.
        Clin Autonom Res. 1994; 4: 41-47
        • Verheyden B.
        • Liu J.
        • van Dijk N.
        • Westerhof B.
        • Reybrouck T.
        • Aubert A.
        • Wieling W.
        Steep fall in cardiac output is main determinant of hypotension during drug-free and nitroglycerine-induced orthostatic vasovagal syncope.
        Heart Rhythm. 2008; 5: 1695-1701
        • Morillo C.A.
        • Eckberg D.L.
        • Ellenbogen K.A.
        • Beightol L.A.
        • Hoag J.B.
        • Tahvanainen K.U.O.
        • Kuusela T.A.
        • Diedrich A.
        Vagal and sympathetic mechanisms in patients with orthostatic vasovagal syncope.
        Circulation. 1997; 96: 2509-2513
        • Jardine D.L.
        • Ikram H.
        • Frampton C.M.
        • Frethey R.
        • Bennett S.I.
        • Crozier I.G.
        The autonomic control of vasovagal syncope.
        Am J Physiol Heart Circ Physiol. 1998; 274: H2110-H2115
        • Kamiya A.
        • Hayano J.
        • Kawada T.
        • Michikami D.
        • Yamamoto K.
        • Ariumi H.
        • Shimizu S.
        • Uemura K.
        • Miyamoto T.
        • Aiba T.
        • Sunagawa K.
        • Sugimachi M.
        Low-frequency oscillation of sympathetic nerve activity decreases during development of tilt-induced syncope preceding sympathetic withdrawal and bradycardia.
        Am J Physiol Heart Circ Physiol. 2005; 289: H1758-H1769
        • Fu Q.
        • Verheyden B.
        • Wieling W.
        • Levine B.D.
        Cardiac output and sympathetic vasoconstrictor responses during upright tilt to presyncope in healthy humans.
        J Physiol. 2012; 590: 1839-1848
        • Jardine D.L.
        • Melton I.C.
        • Crozier I.G.
        • English S.
        • Bennett S.I.
        • Frampton C.M.
        • Ikram H.
        Decrease in cardiac output and sympathetic activity during vasovagal syncope.
        Am J Physiol Heart Circ Physiol. 2002; 282: H1804-H1809
        • Jardine D.L.
        • Melton I.C.
        • Crozier I.G.
        • Bennett S.
        • Donald R.
        • Ikram H.
        Neurohormonal response to head-up tilt and its role in vasovagal syncope.
        Am J Cardiol. 1997; 79: 1302-1306
        • Fedorowski A.
        • van Wijnen V.K.
        • Wieling W.
        Delayed orthostatic hypotension and vasovagal syncope: a diagnostic dilemma.
        Clin Auton Res. 2017; 27: 289-291
        • Alboni P.
        • Dinelli M.
        • Gruppillo P.
        • Bondanelli M.
        • Bettiol K.
        • Marchi P.
        • Urbeti E.
        Haemodynamic changes early in the prodromal symptoms of vasovagal syncope.
        Europace. 2002; 4: 333-338
        • Julu P.O.
        • Cooper V.L.
        • Hansen S.
        • Hainsworth R.
        Cardiovascular regulation in the period preceding vasovagal syncope in conscious humans.
        J Physiol. 2003; 549: 299-311
        • Stewart J.
        • Medow M.
        • Sutton R.
        • Visintainer P.
        • Jardine D.
        • Wieling W.
        Mechanisms of vasovagal syncope in the young: reduced systemic vascular resistance versus reduced cardiac output.
        J Am Heart Assoc. 2017; 6: e004417
        • Schadt J.C.
        • Ludbrook J.
        Hemodynamic and neurohormonal responses to acute hypovolemia in conscious mammals.
        Am J Physiol. 1991; 29: H305-H318
        • Hainsworth R.
        Heart rate and orthostatic stress.
        Clin Autonom Res. 2000; 10: 323-325
        • Rowell L.B.
        • Detry J.
        • Blackmon J.R.
        • Wyss C.
        Importance of the splanchnic bed in human blood pressure regulation.
        J Appl Physiol. 1972; 32: 213-220
        • Hirsch A.
        • Levenson D.
        • Cutler S.
        • Dzau V.
        • Creager M.
        Regional vascular responses to prolonged lower body negative pressure in normal subjects.
        Am J Physiol Heart Circ Physiol. 1989; 257: H219-H225
        • Johnson J.M.
        • Rowell L.B.
        • Niederberger M.
        • Eisman M.M.
        Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial pressures.
        Circ Res. 1974; 34: 515-524
        • Hainsworth R.
        Vascular capacitance: its control and importance.
        Rev Physiol Biochem Pharmacol. 1986; 105: 101-173
        • Rothe C.F.
        Reflex control of veins and vascular capacitance.
        Physiol Rev. 1983; 63: 1281-1342
        • Pang C.C.
        Autonomic control of the venous system in health and disease.
        Pharmacol Ther. 2001; 90: 179-230
        • Roth C.F.
        • Gaddis M.I.
        Autoregulation of cardiac output by passive elastic characteristics of the vascular capacitance system.
        Circulation. 1990; 81: 360-368
        • Fudim M.
        • Yalamuri S.
        • Herbert J.T.
        • Lui P.R.
        • Patel M.R.
        • Sandler A.
        Raising the pressure: hemodynamic effects of splanchnic nerve stimulation.
        J Appl Physiol (1985). 2017; 123: 126-127
        • Gelman S.
        Venous function and central venous pressure.
        Anesthesiology. 2008; 108: 735-748
        • Stewart J.M.
        • Lavin J.
        • Weldon A.
        Orthostasis fails to produce active limb venoconstriction in adolescents.
        J Appl Physiol. 2001; 91: 1723-1729
        • Hausenloy D.J.
        • Arhi C.
        • Chandra N.
        • Franzen-McManus A.-C.
        • Meyer A.
        • Sutton R.
        Blood pressure oscillations during tilt testing as a predictive marker of vasovagal syncope.
        Europace. 2009; 11: 1696-1701
        • Schondorf R.
        • Benoit J.
        • Wein T.
        Cerebrovascular and cardiovascular measurements during neutrally mediated syncope induced by head-up tilt.
        Stroke. 1997; 28: 1564-1568
        • Lagi A.
        • Concetti S.
        • Corsoni V.
        • Georgiadis D.
        • Bacalli S.
        Cerebral vasoconstriction in vasovagal syncope; any link with symptoms?.
        Circulation. 2001; 104: 2694-2698
        • Szufladowicz E.
        • Maniewski R.
        • Zbiec A.
        • Nosek A.
        • Walczak F.
        Near inra-red spectroscopy of cerebral oxygenation during vasovagal syncope.
        Physiol Meas. 2004; 25: 823-836
        • Wieling W.
        • Thijs R.D.
        • van Dijk N.
        • Wilde A.A.
        • Benditt D.G.
        • van Dijk J.G.
        Symptoms and signs of syncope: a review of the link between physiology and clinical clues.
        Brain. 2009; 132: 2630-2642
        • de Jong-de Vos van Steenwijk C.C.E.
        • Wieling W.
        • Johannes J.M.
        • Harms M.P.M.
        • Kuis W.
        • Wesseling K.H.
        Incidence and hemodynamics of near-fainting in healthy 6-16 year old subjects.
        J Am Col Cardiol. 1995; 25: 1615-1621
        • de Jong-de Vos van Steenwijk C.C.E.
        • Wieling W.
        • Harms M.P.M.
        • Wesseling K.H.
        Variability of near-fainting responses in healthy 6-16-year-old subjects.
        Clin Sci (Lond). 1997; 93: 205-211
        • Thomas K.N.
        • Galvin S.D.
        • Williams M.J.A.
        • Willie C.K.
        • Ainsley P.N.
        Identical pattern of cerebral hypoperfusion during different types of syncope.
        J Hum Hypertens. 2010; 24: 458-466
        • Schwartz C.E.
        • Lambert E.
        • Medow M.
        • Stewart J.
        Disruption of phase synchronization between blood pressure and muscle sympathetic activity in postural vasovagal syncope.
        Am J Physiol Heart Circ Physiol. 2013; 305: H1238-H1245
        • Fuca G.
        • Dinelli M.
        • Suzzani P.
        • Scarfo S.
        • Tassinari F.
        • Alboni P.
        The venous system is the main determinant of hypotension in patients with vasovagal syncope.
        Europace. 2006; 8: 839-845
        • Nigro G.
        • Russo V.
        • Rago A.
        • Iovino M.
        • Arena G.
        • Golino P.
        • Russo M.
        • Calabro R.
        The main determinant of hypotension in nitroglycerine tilt-induced vasovagal syncope.
        Pacing Clin Electrophysiol. 2012; 35: 739-774
        • Schroeder C.
        • Tank J.
        • Heusser K.
        • Diedrich A.
        • Luft F.
        • Jordan J.
        Physiological phenomenology of neurally-mediated syncope with management of complications.
        PLoS One. 2011; 6: 1-8
        • Wieling W.
        • Krediet C.T.
        • Wilde A.A.
        Flush after syncope: not always an arrhythmia.
        Cardiovasc Electrophysiol. 2006; 17: 804-805
        • Truijen J.
        • Bundgaard-Nielsen M.
        • van Lieshout J.
        A definition of normovolaemia and consequences for cardiovascular control during orthostasis and environmental stress.
        Eur J Appl Physiol. 2010; 109: 141-157
        • Wieling W.
        • Rozenberg J.
        • Schon I.K.
        • Karemaker J.M.
        • Westerhof B.
        • Jardine D.J.
        Hemodynamic mechanisms underlying prolonged postfaint hypotension.
        Clin Auton Res. 2011; 21: 405-413
        • Rozenberg J.
        • Wieling W.
        • Schon I.K.
        • Westerhof B.
        • Frampton C.
        • Jardine D.
        MSNA during prolonged post-faint hypotension.
        Clin Auton Res. 2012; 22: 167-173
        • Casadei B.
        Vagal control of myocardial contractility in humans.
        Exp Physiol. 2001; 86: 817-823
        • Zitnik R.
        • Burchell H.
        • Shepherd J.
        Hemodynamic effects of inhalation of ammonia in man.
        Am J Cardiol. 1969; 24: 187-190
        • Mosqueda-Garcia R.
        • Furlan R.
        • Fernandez-Violante R.
        • Desai T.
        • Snell M.
        • Jarai Z.
        • Ananthram V.
        • Robertson R.M.
        • Robertson D.
        Sympathetic and baroreceptor reflex function in neurally mediated syncope evoked by tilt.
        J Clin Invest. 1997; 99: 2736-2744
        • Stewart J.M.
        • Suggs M.
        • Merchant S.
        • Sutton R.
        • Terilli C.
        • Visintrainer P.
        • Medow M.S.
        Post-synaptic α1-adrenergic vasoconstriction is impaired in young patients with vasovagal syncope and is corrected by nitric oxide synthase inhibition.
        Circ Arrhythm Electrophysiol. 2016; 9: e003828
        • Stewart J.M.
        • Sutton R.
        • Kothari M.L.
        • Terilli C.
        • Visintainer P.
        • Medow M.S.
        Impaired orthostatic tolerance is corrected by nitric oxide synthase inhibition in young patients with vasovagal syncope.
        Heart. 2017; 103: 1711-1718
        • Benditt D.G.
        • Deeloff B.L.
        • Adkisson W.O.
        • Lu F.
        • Sakaguchi S.
        • Schussler S.
        • Austin E.
        • Chen L.
        Age dependence of relative change in circulating epinephrine and norepinephrine concentrations during tilt induced vasovagal syncope.
        Heart Rhythm. 2012; 9: 1847-1852
        • Epstein S.E.
        • Stampfer M.
        • Beiser G.D.
        Role of capacitance vessels in vasovagal syncope.
        Circulation. 1968; 37: 524-533
        • Ryan K.
        • Rickards C.
        • Hinojosa-Laborde C.
        • Cooke W.
        • Convertino V.
        Sympathetic responses to central hypovolemia: new insights from microneurographic recordings.
        Front Physiol. 2012; 3: 1-14
        • Ermin C.
        • Samniah N.
        • Sakaguchi S.
        • Lurie K.
        • Pham S.
        • Lu F.
        • Benditt D.G.
        Comparison of catecholamine responses during tilt-table-induced vasovagal syncope in patients <35 to those >65 years of age.
        Am J Cardiol. 2004; 93: 225-227
        • Gelman S.
        • Mushin P.S.
        Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics.
        Anesthesiology. 2004; 100: 434-439
        • Zhang R.
        • Behbehani K.
        • Crandall C.
        • Zuckerman J.
        • Levine B.
        Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function.
        Am J Physiol Heart Circ Physiol. 2000; 280: H407-H419
        • Ocon A.
        • Medow M.
        • Taneja I.
        • Stewart J.
        Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope.
        Am J Physiol Heart Circ Physiol. 2010; 300: H527-H540
        • Iwase S.
        • Mano T.
        • Kamiya A.
        • Niimi Y.
        • Qi Fu
        • Suzumura A.
        Syncopal attack alters the burst properties of muscle sympathetic nerve activity in humans.
        Auton Neurosci. 2002; 95: 141-145
        • Oberg B.
        • White S.
        The role of vagal cardiac nerves and arterial baroreceptors in the circulatory adjustments to hemorrhage in the cat.
        Acta Physiol Scand. 1970; 80: 395-403