Advertisement

Epicardial connection between the right-sided pulmonary venous carina and the right atrium in patients with atrial fibrillation: A possible mechanism for preclusion of pulmonary vein isolation without carina ablation

Published:November 19, 2018DOI:https://doi.org/10.1016/j.hrthm.2018.11.017

      Background

      Ablation of the pulmonary venous carina is occasionally required for pulmonary vein isolation (PVI) despite its nonessential role in ipsilateral PVI from the anatomical (endocardial) viewpoint. Although the Bachmann bundle (BB) is a common and main interatrial band, local variations in small tongues of muscular fibers were frequently found in autopsy studies.

      Objective

      We sought to clarify the effect of the electrical conduction pattern from the right atrium (RA) to the left atrium (LA) during sinus rhythm on the necessity of performing right-sided pulmonary venous carina ablation to achieve PVI.

      Methods

      Study subjects comprised 37 consecutive patients undergoing initial catheter ablation of lone atrial fibrillation. During sinus rhythm, RA and LA activation maps were acquired using an electroanatomical mapping system. LA breakthroughs were classified into 3 sites: BB, fossa ovalis (FO), and right-sided pulmonary venous carina. Patients were divided into the carina-ABL (ablation) or non–carina-ABL group on the basis of the necessity of pulmonary venous carina ablation to achieve PVI.

      Results

      Patients were classified in the non–carina-ABL group (n = 26 [70%]) and carina-ABL group (n = 8 [22%]) after excluding 3 patients (8%) because of their complex ablation lesion sets. Breakthrough occurred in the BB (n = 21 patients [62%]), FO (n = 7 [21%]), carina (n = 1 [3%]), carina and BB (n = 3 [9%]), and carina and FO (n = 2 [6%]). Carina breakthrough occurred in 6 patients (75%) in the carina-ABL group but in no patients in the non–carina-ABL group (P < .0001).

      Conclusion

      PVI was not achievable without carina ablation in one-fifth of patients, probably because of epicardial connections present between the right-sided pulmonary venous carina and the RA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • O’Donnell D.
        • Bourke J.P.
        • Furniss S.S.
        Interatrial transseptal electrical conduction: comparison of patients with atrial fibrillation and normal controls.
        J Cardiovasc Electrophysiol. 2002; 13: 1111-1117
        • Jurkko R.
        • Mäntynen V.
        • Lehto M.
        • Tapanainen J.M.
        • Montonen J.
        • Parikka H.
        • Toivonen L.
        Interatrial conduction in patients with paroxysmal atrial fibrillation and in healthy subjects.
        Int J Cardiol. 2009; 145: 455-460
        • Antz M.
        • Otomo K.
        • Arruda M.
        • Scherlag B.J.
        • Pitha J.
        • Tondo C.
        • Lazzara R.
        • Jackman W.M.
        Electrical conduction between the right atrium and the left atrium via the musculature of the coronary sinus.
        Circulation. 1998; 98: 1790-1795
        • Chauvin M.
        • Shah D.C.
        • Haïssaguerre M.
        • Marcellin L.
        • Brechenmacher C.
        The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans.
        Circulation. 2000; 101: 647-652
        • De P.R.
        • Ho S.Y.
        • Salerno-Uriarte J.A.
        • Tritto M.
        • Spadacini G.
        Electroanatomic analysis of sinus impulse propagation in normal human atria.
        J Cardiovasc Electrophysiol. 2002; 13: 1-10
        • Ho S.Y.
        • Cabrera J.A.
        • Sanchez-Quintana D.
        Left atrial anatomy revisited.
        Circ Arrhythm Electrophysiol. 2012; 5: 220-228
        • Ho S.Y.
        • Sanchez-Quintana D.
        • Cabrera J.A.
        • Anderson R.H.
        Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation.
        J Cardiovasc Electrophysiol. 1999; 10: 1525-1533
        • Lemery R.
        • Soucie L.
        • Martin B.
        • Tang A.S.
        • Green M.
        • Healey J.
        Human study of biatrial electrical coupling: determinants of endocardial septal activation and conduction over interatrial connections.
        Circulation. 2004; 110: 2083-2089
        • Omichi C.
        • Chou C.C.
        • Lee M.H.
        • et al.
        Demonstration of electrical and anatomic connections between Marshall bundles and left atrium in dogs: implications on the generation of P waves on surface electrocardiogram.
        J Cardiovasc Electrophysiol. 2002; 13: 1283-1291
        • Tse H.F.
        • Lau C.P.
        • Lee K.L.
        • Morady F.
        Atrial tachycardia arising from an epicardial site with venous connection between the left superior pulmonary vein and superior vena cava.
        J Cardiovasc Electrophysiol. 2003; 14: 540-543
        • Yoshida K.
        • Hattori A.
        • Tsuneoka H.
        • et al.
        Electrophysiological relation between the superior vena cava and right superior pulmonary vein in patients with paroxysmal atrial fibrillation.
        J Cardiovasc Electrophysiol. 2017; 28: 1117-1126
        • Varma N.
        • Abi-Saleh B.
        Electrical isolation of both left pulmonary veins by a single left atrial endocardial radiofrequency energy application: ablation of Marshall bundle bypass.
        Pacing Clin Electrophysiol. 2012; 35: e325-e329
        • Squara F.
        • Liuba I.
        • Chik W.
        • Santangeli P.
        • Maeda S.
        • Zado E.S.
        • Callans D.
        • Marchlinski F.E.
        Electrical connection between ipsilateral pulmonary veins: prevalence and implications for ablation and adenosine testing.
        Heart Rhythm. 2015; 12: 275-282
        • Udyavar A.R.
        • Chang S.L.
        • Tai C.T.
        • et al.
        The important role of pulmonary vein carina ablation as an adjunct to circumferential pulmonary vein isolation.
        J Cardiovasc Electrophysiol. 2008; 19: 593-598
        • Lin Y.J.
        • Tsao H.M.
        • Chang S.L.
        • et al.
        The distance between the vein and lesions predicts the requirement of carina ablation in circumferential pulmonary vein isolation.
        Europace. 2011; 13: 376-382
        • Cabrera J.A.
        • Ho S.Y.
        • Climent V.
        • Fuertes B.
        • Murillo M.
        • Sánchez-Quintana D.
        Morphological evidence of muscular connections between contiguous pulmonary venous orifices: relevance of the interpulmonary isthmus for catheter ablation in atrial fibrillation.
        Heart Rhythm. 2009; 6: 1192-1198
        • Kistler P.M.
        • Ho S.Y.
        • Rajappan K.
        • Morper M.
        • Harris S.
        • Abrams D.
        • Sporton S.C.
        • Schilling R.J.
        Electrophysiologic and anatomic characterization of sites resistant to electrical isolation during circumferential pulmonary vein ablation for atrial fibrillation: a prospective study.
        J Cardiovasc Electrophysiol. 2007; 18: 1282-1288
        • Maille B.
        • Das M.
        • Hussein A.
        • Shaw M.
        • Chaturvedi V.
        • Morgan M.
        • Ronayne C.
        • Snowdon R.L.
        • Gupta D.
        Accuracy of left atrial bipolar voltages obtained by ConfiDENSE multielectrode mapping in patients with persistent atrial fibrillation.
        J Cardiovasc Electrophysiol. 2018; 29: 881-888
        • Proietti R.
        • Santangeli P.
        • Di Biase L.
        • Joza J.
        • Bernier M.L.
        • Wang Y.
        • Sagone A.
        • Viecca M.
        • Essebag V.
        • Natale A.
        Comparative effectiveness of wide antral versus ostial pulmonary vein isolation: a systematic review and meta-analysis.
        Circ Arrhythm Electrophysiol. 2014; 7: 39-45
        • Pambrun T.
        • Combes S.
        • Sousa P.
        • Bloa M.L.
        • El Bouazzaoui R.
        • Grand-Larrieu D.
        • Thompson N.
        • Martin R.
        • Combes N.
        • Boveda S.
        • Haïssaguerre M.
        • Albenque J.P.
        Contact-force guided single-catheter approach for pulmonary vein isolation: feasibility, outcomes, and cost-effectiveness.
        Heart Rhythm. 2017; 14: 331-338
        • Oral H.
        • Chugh A.
        • Good E.
        • Igic P.
        • Elmouchi D.
        • Tschopp D.R.
        • Reich S.S.
        • Bogun F.
        • Pelosi Jr., F.
        • Morady F.
        Randomized comparison of encircling and nonencircling left atrial ablation for chronic atrial fibrillation.
        Heart Rhythm. 2005; 2: 1165-1172
        • Lemola K.
        • Oral H.
        • Chugh A.
        • Hall B.
        • Cheung P.
        • Han J.
        • Tamirisa K.
        • Good E.
        • Bogun F.
        • Pelosi Jr., F.
        • Morady F.
        Pulmonary vein isolation as an end point for left atrial circumferential ablation of atrial fibrillation.
        J Am Coll Cardiol. 2005; 46: 1060-1066
        • Patel P.J.
        • D’Souza B.
        • Saha P.
        • Chik W.W.
        • Riley M.P.
        • Garcia F.C.
        Electroanatomic mapping of the intercaval bundle in atrial fibrillation.
        Circ Arrhythm Electrophysiol. 2014; 7: 1262-1267
        • Ho S.Y.
        • Cabrera J.A.
        • Tran V.H.
        • Farré J.
        • Anderson R.H.
        • Sánchez-Quintana D.
        Architecture of the pulmonary veins: relevance to radiofrequency ablation.
        Heart. 2001; 86: 265-270