Advertisement

SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes

  • Cheng-I Wu
    Correspondence
    Address reprint requests and correspondence: Dr Cheng-I Wu, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
    Affiliations
    Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands

    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)

    Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Pieter G. Postema
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands

    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Elena Arbelo
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain

    Institut d’Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain

    Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Elijah R. Behr
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)

    Cardiology Clinical Academic Group, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
    Search for articles by this author
  • Connie R. Bezzina
    Affiliations
    Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands

    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Carlo Napolitano
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)

    Molecular Cardiology and Medicine Division, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Tomas Robyns
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)

    Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Vincent Probst
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)

    l'Institut du thorax, Service de Cardiologie du CHU de Nantes, Hopital Nord, Nantes Cedex, France
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Eric Schulze-Bahr
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)

    Institute for Genetics of Heart Diseases (IfGH), Division of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Carol Ann Remme
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands

    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Arthur A.M. Wilde
    Correspondence
    Dr Arthur A.M. Wilde, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
    Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
    Affiliations
    Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands

    European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
    Search for articles by this author
  • Author Footnotes
    1 European Cardiac Arrhythmia Genetics Focus Group of European Heart Rhythm Association.
      Ever since the first case was reported at the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19) has become a serious threat to public health globally in short time. At this point in time, there is no proven effective therapy. The interactions with concomitant disease are largely unknown, and that may be particularly pertinent to inherited arrhythmia syndrome. An arrhythmogenic effect of COVID-19 can be expected, potentially contributing to disease outcome. This may be of importance for patients with an increased risk of cardiac arrhythmias, either secondary to acquired conditions or comorbidities or consequent to inherited syndromes. Management of patients with inherited arrhythmia syndromes such as long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia in the setting of the COVID-19 pandemic may prove particularly challenging. Depending on the inherited defect involved, these patients may be susceptible to proarrhythmic effects of COVID-19–related issues such as fever, stress, electrolyte disturbances, and use of antiviral drugs. Here, we describe the potential COVID-19–associated risks and therapeutic considerations for patients with distinct inherited arrhythmia syndromes and provide recommendations, pending local possibilities, for their monitoring and management during this pandemic.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wang D.
        • Hu B.
        • Hu C.
        • et al.
        clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China.
        JAMA. 2020; 323: 1061-1069
        • Chan J.F.
        • Yuan S.
        • Kok K.H.
        • et al.
        A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.
        Lancet. 2020; 395: 514-523
        • Zhou P.
        • Yang X.L.
        • Wang X.G.
        • et al.
        A pneumonia outbreak associated with a new coronavirus of probable bat origin.
        Nature. 2020; 579: 270-273
        • Guan W.J.
        • Ni Z.Y.
        • Hu Y.
        • et al
        Clinical characteristics of coronavirus disease 2019 in China.
        N Engl J Med. 2020; 382: 1708-1720
        • Oudit G.Y.
        • Kassiri Z.
        • Jiang C.
        • et al.
        SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS.
        Eur J Clin Invest. 2009; 39: 618-625
        • Kuba K.
        • Imai Y.
        • Rao S.
        • et al.
        A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury.
        Nat Med. 2005; 11: 875-879
        • Zheng Y.Y.
        • Ma Y.T.
        • Zhang J.Y.
        • Xie X.
        COVID-19 and the cardiovascular system.
        Nat Rev Cardiol. 2020; 17: 259-260
        • Hu H.
        • Ma F.
        • Wei X.
        • Fang Y.
        Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin [published online ahead of print March 16, 2020]. Eur Heart J. ehaa190.
        • Wu C.
        • Hu X.
        • Song J.
        • et al.
        Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19) [published online ahead of print February 29, 2020]. medRxiv.
        • Bedford J.
        • Enria D.
        • Giesecke J.
        • et al.
        COVID-19: towards controlling of a pandemic.
        Lancet. 2020; 395: 1015-1018
        • Yang P.
        • Kanki H.
        • Drolet B.
        • et al.
        Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes.
        Circulation. 2002; 105: 1943-1948
        • Paulussen A.D.
        • Gilissen R.A.
        • Armstrong M.
        • et al.
        Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients.
        J Mol Med (Berl). 2004; 82: 182-188
        • Vink A.S.
        • Neumann B.
        • Lieve K.V.V.
        • et al.
        Determination and interpretation of the QT interval.
        Circulation. 2018; 138: 2345-2358
        • Goldenberg I.
        • Horr S.
        • Moss A.J.
        • et al.
        Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals.
        J Am Coll Cardiol. 2011; 57: 51-59
        • Postema P.G.
        • Neville J.
        • de Jong J.S.S.G.
        • Romero K.
        • Wilde A.A.M.
        • Woosley R.L.
        Safe drug use in long QT syndrome and Brugada syndrome: comparison of website statistics.
        Europace. 2013; 15: 1042-1049
        • Goldenberg I.
        • Moss A.J.
        • Bradley J.
        • et al.
        Long-QT syndrome after age 40.
        Circulation. 2008; 117: 2192-2201
        • Wang M.
        • Cao R.
        • Zhang L.
        • et al.
        Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
        Cell Res. 2020; 30: 269-271
        • Savarino A.
        • Di Trani L.
        • Donatelli I.
        • Cauda R.
        • Cassone A.
        New insights into the antiviral effects of chloroquine.
        Lancet Infect Dis. 2006; 6: 67-69
        • Zhou D.
        • Dai S.-M.
        • Tong Q.
        COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression.
        J Antimicrob Chemother. 2020; 75: 1667-1670
        • Gautret P.
        • Lagier J.C.
        • Parola P.
        • et al.
        Hydroxychloroquine and azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial.
        International Journal of Antimicrobial Agents. 2020; 56 (Article 105949)
        • Vincent M.J.
        • Bergeron E.
        • Benjannet S.
        • et al.
        Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.
        Virol J. 2005; 2: 69
        • White N.J.
        Cardiotoxicity of antimalarial drugs.
        Lancet Infect Dis. 2007; 7: 549-558
        • Costedoat-Chalumeau N.
        • Hulot J.S.
        • Amoura Z.
        • et al.
        Heart conduction disorders related to antimalarials toxicity: an analysis of electrocardiograms in 85 patients treated with hydroxychloroquine for connective tissue diseases.
        Rheumatology (Oxford). 2007; 46: 808-810
        • Liu J.
        • Cao R.
        • Xu M.
        • et al.
        Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.
        Cell Discov. 2020; 6: 16
        • Choi Y.
        • Lim H.S.
        • Chung D.
        • Choi J.G.
        • Yoon D.
        Risk evaluation of azithromycin-induced QT prolongation in real-world practice.
        Biomed Res Int. 2018; 2018: 1574806
        • Yang Z.
        • Prinsen J.K.
        • Bersell K.R.
        • et al.
        Azithromycin causes a novel proarrhythmic syndrome.
        Circ Arrhythm Electrophysiol. 2017; 10e003560
        • Amin A.S.
        • Herfst L.J.
        • Delisle B.P.
        • et al.
        Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome.
        J Clin Invest. 2008; 118: 2552-2561
        • Tisdale J.E.
        • Jaynes H.A.
        • Kingery J.R.
        • et al.
        Development and validation of a risk score to predict QT interval prolongation in hospitalized patients.
        Circ Cardiovasc Qual Outcomes. 2013; 6: 479-487
        • Viskin S.
        • Rosovski U.
        • Sands A.J.
        • et al.
        Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one.
        Heart Rhythm. 2005; 2: 569-574
        • Yang T.
        • Roden D.M.
        Extracellular potassium modulation of drug block of IKr: implications for torsade de pointes and reverse use-dependence.
        Circulation. 1996; 93: 407-411
        • Antzelevitch C.
        • Yan G.X.
        • Ackerman M.J.
        • et al.
        J-wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge.
        Heart Rhythm. 2016; 13: e295-e324
      1. Postema PG, Wolpert C, Amin AS, et al. Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm 2009;6:1335-1341.

        • Michowitz Y.
        • Milman A.
        • Sarquella-Brugada G.
        • et al.
        Fever-related arrhythmic events in the multicenter Survey on Arrhythmic Events in Brugada Syndrome.
        Heart Rhythm. 2018; 15: 1394-1401
        • Amin A.S.
        • Meregalli P.G.
        • Bardai A.
        • Wilde A.A.M.
        • Tan H.L.
        Fever increases the risk for cardiac arrest in the Brugada syndrome.
        Ann Intern Med. 2008; 149: 216-218
        • Mizusawa Y.
        • Morita H.
        • Adler A.
        • et al.
        Prognostic significance of fever-induced Brugada syndrome.
        Heart Rhythm. 2016; 13: 1515-1520
        • Andorin A.
        • Behr E.R.
        • Denjoy I.
        • et al.
        Impact of clinical and genetic findings on the management of young patients with Brugada syndrome.
        Heart Rhythm. 2016; 13: 1274-1282https://doi.org/10.1016/j.hrthm.2016.02.013
      2. Peltenburg P, Vink AS, Blom NA, Rammeloo LAJ, Clur SAB. Fever in children at-risk for the Brugada syndrome. Poster HRS 2019 (S-PO04-217); https://doi.org/10.1016/j.hrthm.2019.04.017.

        • Dumaine R.
        • Towbin J.A.
        • Brugada P.
        • et al.
        Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent.
        Circ Res. 1999; 85: 803-809
        • Wan X.
        • Wang Q.
        • Kirsch G.E.
        Functional suppression of sodium channels by β1-subunits as a molecular mechanism of idiopathic ventricular fibrillation.
        J Mol Cell Cardiol. 2000; 32: 1873-1884
        • Escayg A.
        • MacDonald B.T.
        • Meisler M.H.
        • et al.
        Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+ 2.
        Nat Genet. 2000; 24: 343-345
        • Novella S.P.
        • Hisama F.M.
        • Dib-Hajj S.D.
        • Waxman S.G.
        A case of inherited erythromelalgia.
        Nat Clin Pract Neurol. 2007; 3: 229-234
        • Priori S.G.
        • Wilde A.A.M.
        • Horie M.
        • et al.
        HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013.
        Heart Rhythm. 2013; 10: 1932-1963
        • Thorsen K.
        • Dam V.S.
        • Kjaer-Sorensen K.
        • et al.
        Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome.
        Nat Commun. 2017; 8: 1696
        • Raschwitz L.S.
        • El-Battrawy I.
        • Schlentrich K.
        • et al.
        Differences in short QT syndrome subtypes: a systematic literature review and pooled analysis.
        Front Genet. 2020; 10: 1312
        • Luo C.
        • Wang K.
        • Liu T.
        • Zhang H.
        Computational analysis of the action of chloroquine on short QT syndrome variant 1 and variant 3 in human ventricles.
        Conf Proc IEEE Eng Med Biol Soc. 2018; 2018: 5462-5465
        • El Harchi A.
        • McPate M.J.
        • Zhang Yh
        • Zhang H.
        • Hancox J.C.
        Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome.
        J Mol Cell Cardiol. 2009; 47: 743-747
        • van der Werf C.
        • Wilde A.A.M.
        Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside.
        Heart. 2013; 99: 497
        • van der Werf C.
        • Lieve K.V.
        • Bos J.M.
        • et al.
        Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest.
        Eur Heart J. 2019; 40: 2953-2961
        • Danielsen T.K.
        • Manotheepan R.
        • Sadredini M.
        • et al.
        Arrhythmia initiation in catecholaminergic polymorphic ventricular tachycardia type 1 depends on both heart rate and sympathetic stimulation.
        PLoS One. 2018; 13e0207100
        • Krahn Andrew D.
        • Gollob M.
        • Yee R.
        • et al.
        Diagnosis of unexplained cardiac arrest.
        Circulation. 2005; 112: 2228-2234
        • Marjamaa A.
        • Hiippala A.
        • Arrhenius B.
        • et al.
        Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia.
        J Cardiovasc Electrophysiol. 2012; 23: 194-199
        • Kobayashi S.
        • Susa T.
        • Ishiguchi H.
        • et al.
        A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.
        PLoS One. 2015; 10e0114314
        • Bellamy D.
        • Nuthall G.
        • Dalziel S.
        • Skinner J.R.
        Catecholaminergic polymorphic ventricular tachycardia: the cardiac arrest where epinephrine is contraindicated.
        Pediatr Crit Care Med. 2019; 20: 262-268
        • Offerhaus J.A.
        • Wilde A.A.M.
        • Remme C.A.
        Prophylactic (hydroxy)chloroquine in COVID-19: potential relevance for cardiac arrhythmia risk.
        Heart Rhythm. 2020; 17: 1480-1486