Advertisement

Current strategies to minimize postoperative hematoma formation in patients undergoing cardiac implantable electronic device implantation: A review

Published:November 23, 2020DOI:https://doi.org/10.1016/j.hrthm.2020.11.017
      There are an increasing number of cardiac electronic device implants and generator changes with a longer patient life expectancy along with concomitant increase in antiplatelet and anticoagulant regimens, which can increase the incidence of pocket hematomas. We have conducted an in-depth analysis on the relevant literature, which is rife with varying definition of hematomas, on ways to reduce pocket hematomas. We have analyzed studies on periprocedural medication management, intraprocedural use of prohemostatic agents, and postprocedure role of compression devices.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lind K.D.
        Understanding the Market for Implantable Medical Devices.
        AARP Public Policy Institute, Washington, DC2017 (Technical Report)
        • After a pacemaker/defibrillator implant generator change
        Arizona Heart Rhythm Center website.
        • Sridhar A.R.M.
        • Yarlagadda V.
        • Yeruva M.R.
        • et al.
        Impact of haematoma after pacemaker and CRT device implantation on hospitalization costs, length of stay, and mortality: a population-based study.
        Europace. 2015; 17: 1548-1554
        • Wiegand U.K.H.
        • LeJeune D.
        • Boguschewski F.
        • et al.
        Pocket hematoma after pacemaker or implantable cardioverter defibrillator surgery: influence of patient morbidity, operation strategy, and perioperative antiplatelet/anticoagulation therapy.
        Chest. 2004; 126: 1177-1186
        • Palmisano P.
        • Accogli M.
        • Zaccaria M.
        • et al.
        Rate, causes, and impact on patient outcome of implantable device complications requiring surgical revision: large population survey from two centres in Italy.
        Europace. 2013; 15: 531-540
        • Krahn A.D.
        • Lee D.S.
        • Birnie D.
        • et al.
        Ontario ICD Database Investigators. Predictors of short-term complications after implantable cardioverter-defibrillator replacement: results from the Ontario ICD Database.
        Circ Arrhythm Electrophysiol. 2011; 4: 136-142
        • Sławek-Szmyt S.
        • Araszkiewicz A.
        • Grygier M.
        • et al.
        PACE DRAP: a simple score for predicting significant bleeding complications after cardiac implantable electronic device surgery.
        Pol Arch Intern Med. 2020; 130: 206-215
        • Sohail M.R.
        • Henrikson C.A.
        • Braid-Forbes M.J.
        • et al.
        Mortality and cost associated with cardiovascular implantable electronic device infections.
        Arch Intern Med. 2011; 171: 1821-1828
        • Uslan D.Z.
        • Gleva M.J.
        • Warren D.K.
        • et al.
        Cardiovascular implantable electronic device replacement infections and prevention: results from the REPLACE Registry.
        Pacing Clin Electrophysiol. 2012; 35: 81-87
        • Song J.
        • Tark A.
        • Larson E.L.
        The relationship between pocket hematoma and risk of wound infection among patients with a cardiovascular implantable electronic device: an integrative review.
        Heart Lung. 2020; 49: 92-98
        • Sadeghi H.
        • Alizadehdiz A.
        • Fazelifar A.
        • et al.
        New insights into predictors of cardiac implantable electronic device infection.
        Tex Heart Inst J. 2018; 45: 128-135
        • Raad D.
        • Irani J.
        • Akl E.G.
        • et al.
        Implantable electrophysiologic cardiac device infections: a risk factor analysis.
        Eur J Clin Microbiol Infect Dis. 2012; 31: 3015-3021
        • Klug D.
        • Balde M.
        • Pavin D.
        • et al.
        Risk factors related to infections of implanted pacemakers and cardioverter-defibrillators.
        Circulation. 2007; 116: 1349-1355
        • Sohail M.R.
        • Uslan D.Z.
        • Khan A.H.
        • et al.
        Risk factor analysis of permanent pacemaker infection.
        Clin Infect Dis. 2007; 45: 166-173
        • Lekkerkerker J.C.
        • van Nieuwkoop C.
        • Trines S.A.
        • et al.
        Risk factors and time delay associated with cardiac device infections: Leiden device registry.
        Heart. 2009; 95: 715
        • Bloom H.
        • Heeke B.
        • Leon A.
        • et al.
        Renal insufficiency and the risk of infection from pacemaker or defibrillator surgery.
        Pacing Clin Electrophysiol. 2006; 29: 142-145
        • Hercé B.
        • Nazeyrollas P.
        • Lesaffre F.
        • et al.
        Risk factors for infection of implantable cardiac devices: data from a registry of 2496 patients.
        Europace. 2013; 15: 66-70
        • Ilov N.
        • Ilov N.
        • Nechepurenko A.
        • et al.
        Arguments to apply epinephrine for pocket hematoma reduction: the MAITRE study.
        J Atr Fibrillation. 2016; 9: 1391
        • Van Der Wal M.
        • Bloemen M.
        • Verhaegen P.
        • et al.
        Objective color measurements: clinimetric performance of three devices on normal skin and scar tissue.
        J Burn Care Res. 2013; 34: e187-e194
        • Beausang E.
        • Floyd H.
        • Dunn K.W.
        • et al.
        A new quantitative scale for clinical scar assessment.
        Plast Reconstr Surg. 1998; 102: 1954-1961
        • Draaijers L.J.
        • Tempelman F.R.H.
        • Botman Y.A.M.
        • et al.
        The patient and observer scar assessment scale: a reliable and feasible tool for scar evaluation.
        Plast Reconstr Surg. 2004; 113: 1960-1965
        • Van De Kar A.L.
        • Corion L.U.M.
        • Smeulders M.J.C.
        • et al.
        Reliable and feasible evaluation of linear scars by the patient and observer scar assessment scale.
        Plast Reconstr Surg. 2005; 116: 514-522
        • Turagam M.K.
        • Nagarajan D.V.
        • Bartus K.
        • et al.
        Use of a pocket compression device for the prevention and treatment of pocket hematoma after pacemaker and defibrillator implantation (STOP-HEMATOMA-I).
        J Interv Card Electrophysiol. 2017; 49: 197-204
        • Bernard M.L.
        • Shotwell M.
        • Nietert P.J.
        • et al.
        Meta-analysis of bleeding complications associated with cardiac rhythm device implantation.
        Circ Arrhythm Electrophysiol. 2012; 5: 468-474
        • Kutinsky I.B.
        • Jarandilla R.
        • Jewett M.
        • et al.
        Risk of hematoma complications after device implant in the clopidogrel era.
        Circ Arrhythm Electrophysiol. 2010; 3: 312-318
        • Birnie D.H.
        • Healey J.S.
        • Wells G.A.
        • et al.
        Pacemaker or defibrillator surgery without interruption of anticoagulation.
        N Engl J Med. 2013; 368: 2084-2093
        • Kovacs M.J.
        • Kearon C.
        • Rodger M.
        • et al.
        Single-arm study of bridging therapy with low-molecular-weight heparin for patients at risk of arterial embolism who require temporary interruption of warfarin.
        Circulation. 2004; 110: 1658-1663
        • Baillargeon J.
        • Holmes H.M.
        • Lin Y.
        • et al.
        Concurrent use of warfarin and antibiotics and the risk of bleeding in older adults.
        Am J Med. 2012; 125: 183-189
        • Tischenko A.
        • Gula L.J.
        • Yee R.
        • et al.
        Implantation of cardiac rhythm devices without interruption of oral anticoagulation compared with perioperative bridging with low-molecular weight heparin.
        Am Heart J. 2009; 158: 252-256
        • Robinson M.
        • Healey J.S.
        • Eikelboom J.
        • et al.
        Postoperative low-molecular-weight heparin bridging is associated with an increase in wound hematoma following surgery for pacemakers and implantable defibrillators.
        Pacing Clin Electrophysiol. 2009; 32 (378–338)
        • Ghanbari H.
        • Phard W.S.
        • Al-Ameri H.
        • et al.
        Meta-analysis of safety and efficacy of uninterrupted warfarin compared to heparin-based bridging therapy during implantation of cardiac rhythm devices.
        Am J Cardiol. 2012; 110: 1482-1488
        • Feng L.
        • Li Y.
        • Li J.
        • et al.
        Oral anticoagulation continuation compared with heparin bridging therapy among high risk patients undergoing implantation of cardiac rhythm devices: a meta-analysis.
        Thromb Haemost. 2012; 108: 1124-1131
        • Du L.
        • Zhang Y.
        • Wang W.
        • et al.
        Perioperative anticoagulation management in patients on chronic oral anticoagulant therapy undergoing cardiac devices implantation: a meta-analysis.
        Pacing Clin Electrophysiol. 2014; 37: 1573-1586
        • Sant’anna R.T.
        • Leiria T.L.
        • Nascimento T.
        • et al.
        Meta-analysis of continuous oral anticoagulants versus heparin bridging in patients undergoing CIED surgery: reappraisal after the BRUISE study.
        Pacing Clin Electrophysiol. 2015; 38: 417-423
        • Yang X.
        • Wang Z.
        • Zhang Y.
        • et al.
        The safety and efficacy of antithrombotic therapy in patients undergoing cardiac rhythm device implantation: a meta-analysis.
        Europace. 2015; 17: 1076-1084
        • Sticherling C.
        • Marin F.
        • Birnie D.
        Antithrombotic management in patients undergoing electrophysiological procedures: a European Heart Rhythm Association (EHRA) position document endorsed by the ESC Working Group Thrombosis, Heart Rhythm Society (HRS), and Asia Pacific Heart Rhythm Society (APHRS).
        Europace. 2015; 17: 1197-1214
        • Krahn A.D.
        • Longtin Y.
        • Philippon F.
        • et al.
        Prevention of Arrhythmia Device Infection Trial: the PADIT Trial.
        J Am Coll Cardiol. 2018; 72: 3098-3109
        • Kosiuk J.
        • Koutalas E.
        • Doering M.
        • et al.
        Treatment with novel oral anticoagulants in a real-world cohort of patients undergoing cardiac rhythm device implantations.
        Europace. 2014; 16: 1028-1032
        • Jennings J.M.
        • Robichaux R.
        • McElderry H.T.
        • et al.
        Cardiovascular implantable electronic device implantation with uninterrupted dabigatran: comparison to uninterrupted warfarin.
        J Cardiovasc Electrophysiol. 2013; 24: 1125-1129
        • Leef G.C.
        • Hellkamp A.S.
        • Patel M.R.
        • et al.
        Safety and efficacy of rivaroxaban in patients with cardiac implantable electronic devices: observations from the ROCKET AF Trial.
        J Am Heart Assoc. 2017; 6e004663
        • Birnie D.H.
        • Healey J.S.
        • Wells G.A.
        • et al.
        Continued vs. interrupted direct oral anticoagulants at the time of device surgery, in patients with moderate to high risk of arterial thrombo-embolic events (BRUISE CONTROL-2).
        Eur Heart J. 2018; 39: 3973-3979
        • Essebag V.
        • Healey J.S.
        • Joza J.
        • et al.
        Effect of direct oral anticoagulants, warfarin, and antiplatelet agents on risk of device pocket hematoma.
        Circ Arrhythm Electrophysiol. 2019; 12e007545
        • Rui P.
        • Okeyode T.
        National Ambulatory Medical Care Survey: 2016 National Summary Tables. Centers for Disease Control and Prevention website.
        • Wiviott S.D.
        • Braunwald E.
        • McCabe C.H.
        • et al.
        Prasugrel versus clopidogrel in patients with acute coronary syndromes.
        N Engl J Med. 2007; 357: 2001-2015
        • Wiviott S.D.
        • Braunwald E.
        • McCabe C.H.
        • et al.
        Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial.
        Lancet. 2008; 371: 1353-1363
        • Wallentin L.
        • Becker R.C.
        • Budaj A.
        • et al.
        Ticagrelor versus clopidogrel in patients with acute coronary syndromes.
        N Engl J Med. 2009; 361: 1045-1057
        • Tompkins C.
        • Cheng A.
        • Dalal D.
        • et al.
        Dual antiplatelet therapy and heparin “bridging” significantly increase the risk of bleeding complications after pacemaker or implantable cardioverter-defibrillator device implantation.
        J Am Coll Cardiol. 2010; 55: 2376-2382
        • Ghanbari H.
        • Nallamothu B.K.
        • Wang Y.
        • et al.
        Antithrombotic therapy and outcomes after ICD implantation in patients with atrial fibrillation and coronary artery disease: an analysis from the National Cardiovascular Data Registry (NCDR)®.
        J Am Heart Assoc. 2015; 4e001331
        • Nichols C.I.
        • Vose J.G.
        Incidence of bleeding-related complications during primary implantation and replacement of cardiac implantable electronic devices.
        J Am Heart Association. 2017; 6e004263
        • Milic D.
        • Perisic Z.
        • Zivic S.
        • et al.
        Prevention of pocket related complications with fibrin sealant in patients undergoing pacemaker implantation who are receiving anticoagulant treatment.
        Europace. 2005; 7: 374-379
        • Ohlow M.-A.
        • Buchter B.
        • Brunelli M.
        • et al.
        Prevention of pocket-related complications following heart rhythm device implantation: D-Stat HemostatTM versus vacuum drainage [in German].
        Herzschrittmacherther Elektrophysiol. 2015; 26: 45-51
        • Beton O.
        • Saricam E.
        • Kaya H.
        • et al.
        Bleeding complications during cardiac electronic device implantation in patients receiving antithrombotic therapy: is there any value of local tranexamic acid?.
        BMC Cardiovasc Disord. 2016; 16: 73
        • Awada H.
        • Geller J.C.
        • Brunelli M.
        • et al.
        Pocket related complications following cardiac electronic device implantation in patients receiving anticoagulation and/or dual antiplatelet therapy: prospective evaluation of different preventive strategies.
        J Interv Card Electrophysiol. 2019; 54: 247-255
        • SURGICEL® FIBRILLARTM Absorbable Hemostat
        Ethicon/Johnson & Johnson website.
        • Tavlaşoğlu M.
        • Durukan A.B.
        • Kürklüoğlu M.
        • et al.
        Comparison of sternal intramedullary bleeding prevention strategies in cardiac surgery.
        Turk J Med Sci. 2013; 43: 695-699
      1. Healthcare Professionals: Aquamantys™ Bipolar Sealers. Medtronic website.
        • Frank S.M.
        • Wasey J.O.
        • Dwyer I.M.
        • et al.
        Radiofrequency bipolar hemostatic sealer reduces blood loss, transfusion requirements, and cost for patients undergoing multilevel spinal fusion surgery: a case control study.
        J Orthop Surg Res. 2014; 9: 50
        • Marulanda G.A.
        • Ulrich S.D.
        • Seyler T.M.
        • et al.
        Reductions in blood loss with a bipolar sealer in total hip arthroplasty.
        Expert Rev Med Devices. 2008; 5: 125-131
        • Procyk S.
        The Transcollation: short hospitals stay and accelerated recovery in total hip and knee arthroplasties using a radiofrequency bipolar sealer—an innovative approach in the conceptualization of the surgical gesture.
        Natl Acad of Surg. 2015; 14: 87-97
        • Clement R.C.
        • Kamath A.F.
        • Derman P.B.
        • et al.
        Bipolar sealing in revision total hip arthroplasty for infection: efficacy and cost analysis.
        J Arthroplasty. 2012; 27: 1376-1381
        • Ackerman S.J.
        • Tapia C.I.
        • Baik R.
        • et al.
        Use of a bipolar sealer in total hip arthroplasty: medical resource use and costs using a hospital administrative database.
        Orthopedics. 2014; 37: e472-e481
        • Rosenberg A.G.
        Reducing blood loss in total joint surgery with a saline-coupled bipolar sealing technology.
        J Arthroplasty. 2007; 22: 82-85
        • Zeh A.
        • Messer J.
        • Davis J.
        • et al.
        The Aquamantys system—an alternative to reduce blood loss in primary total hip arthroplasty?.
        J Arthroplasty. 2010; 25: 1072-1077
        • Barsoum W.K.
        • Klika A.K.
        • Murray T.G.
        • et al.
        Prospective randomized evaluation of the need for blood transfusion during primary total hip arthroplasty with use of a bipolar sealer.
        J Bone Joint Surg Am. 2011; 93: 513-518
        • Schaller R.
        • Santangeli P.
        • Lisa T.
        • et al.
        Use of a novel bipolar sealer device in pocket infections: a case series.
        J Cardiovasc Electrophysiol. 2019; 30: 1727-1731
        • Kaimal A.J.
        • Philip J.H.
        • Greenberg J.A.
        How much pressure does a pressure dressing press? A pilot study quantifying the effects of a pressure dressing on the post-cesarean section incision. Wounds website.
        • Valentino V.
        • Greenberg Y.J.
        • Yang F.
        A unique pressure bandage approach for the prevention of device pocket hematoma. EP Lab Digest website.