Advertisement

Systematic quantification of histologic ventricular fibrosis in isolated mitral valve prolapse and sudden cardiac death

Published:December 24, 2020DOI:https://doi.org/10.1016/j.hrthm.2020.12.021

      Background

      Cardiac fibrosis in mitral valve prolapse (MVP) is implicated in the development of sudden cardiac death (SCD); however, the pattern remains poorly characterized.

      Objective

      The purpose of this study was to systematically quantify left and right ventricular fibrosis in individuals with isolated MVP and SCD (iMVP-SCD), whereby other potential causes of death are excluded, compared to a control cohort.

      Methods

      Individuals with iMVP-SCD were identified from the Victorian Institute of Forensic Medicine, Australia, and matched for age, sex, and body mass index to control cases with noncardiac death. Cardiac tissue sections were analyzed to determine collagen deposition in the left ventricular free wall (anterior, lateral, and posterior portions), interventricular septum, and right ventricle. Within the iMVP-SCD cases, the endocardial-to-epicardial distribution of fibrosis within the left ventricle was specifically characterized.

      Results

      Seventeen cases with iMVP-SCD were matched 1:1 with 17 controls, yielding 149 samples and 1788 histologic regions. The iMVP-SCD group had increased left ventricular (anterior, lateral, and posterior; all P <.001) and interventricular septum fibrosis (P <.001), but similar amounts of right ventricular fibrosis (P = .62) compared to controls. In iMVP-SCD, left ventricular fibrosis was significantly higher in the lateral and posterior walls compared to the anterior wall and interventricular septum (all P <.001). Within the lateral and posterior walls, iMVP-SCD cases had a significant endocardial-to-epicardial gradient of cardiac fibrosis (P <.01) similar to other known conditions that cause cardiac remodeling.

      Conclusion

      Our study indicates that nonuniform left ventricular remodeling with both localized and generalized left ventricular fibrosis is important in the pathogenesis of SCD in individuals with MVP.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Freed L.A.
        • Levy D.
        • Levine R.A.
        • et al.
        Prevalence and clinical outcome of mitral-valve prolapse.
        N Engl J Med. 1999; 341: 1-7
        • Sriram C.S.
        • Syed F.F.
        • Ferguson M.E.
        • et al.
        Malignant bileaflet mitral valve prolapse syndrome in patients with otherwise idiopathic out-of-hospital cardiac arrest.
        J Am Coll Cardiol. 2013; 62: 222-230
        • Narayanan K.
        • Uy-Evanado A.
        • Teodorescu C.
        • et al.
        Mitral valve prolapse and sudden cardiac arrest in the community.
        Heart Rhythm. 2016; 13: 498-503
        • Han H.C.
        • Ha F.J.
        • Teh A.W.
        • et al.
        Mitral valve prolapse and sudden cardiac death: a systematic review.
        J Am Heart Assoc. 2018; 7e010584
        • Miller M.A.
        • Dukkipati S.R.
        • Turagam M.
        • Liao S.L.
        • Adams D.H.
        • Reddy V.Y.
        Arrhythmic mitral valve prolapse: JACC review topic of the week.
        J Am Coll Cardiol. 2018; 72: 2904-2914
        • Basso C.
        • Iliceto S.
        • Thiene G.
        • Perazzolo Marra M.
        Mitral valve prolapse, ventricular arrhythmias, and sudden death.
        Circulation. 2019; 140: 952-964
        • Nalliah C.J.
        • Mahajan R.
        • Elliott A.D.
        • et al.
        Mitral valve prolapse and sudden cardiac death: a systematic review and meta-analysis.
        Heart. 2019; 105: 144-151
        • Han H.C.
        • Parsons S.A.
        • Teh A.W.
        • et al.
        Characteristic histopathological findings and cardiac arrest rhythm in isolated mitral valve prolapse and sudden cardiac death.
        J Am Heart Assoc. 2020; 9e015587
        • Han Y.
        • Peters D.C.
        • Salton C.J.
        • et al.
        Cardiovascular magnetic resonance characterization of mitral valve prolapse.
        JACC Cardiovasc Imaging. 2008; 1: 294-303
        • Basso C.
        • Perazzolo-Marra M.
        • Rizzo S.
        • et al.
        Arrhythmic mitral valve prolapse and sudden cardiac death.
        Circulation. 2015; 132: 556-566
        • Mason J.W.
        • Koch F.H.
        • Billingham M.E.
        • Winkle R.A.
        Cardiac biopsy evidence for a cardiomyopathy associated with symptomatic mitral valve prolapse.
        Am J Cardiol. 1978; 42: 557-562
        • Vecchia L.L.
        • Ometto R.
        • Centofante P.
        • et al.
        Arrhythmic profile, ventricular function, and histomorphometric findings in patients with idiopathic ventricular tachycardia and mitral valve prolapse: clinical and prognostic evaluation.
        Clin Cardiol. 1998; 21: 731-735
        • Buxton A.E.
        • Calkins H.
        • Callans D.J.
        • et al.
        ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association task force on clinical data standards (ACC/AHA/HRS writing committee to develop data standards on electrophysiology).
        J Am Coll Cardiol. 2006; 48: 2360-2396
        • Wong C.
        • Marwick T.H.
        Obesity cardiomyopathy: pathogenesis and pathophysiology.
        Nat Clin Pract Cardiovasc Med. 2007; 4: 436-443
        • Raju H.
        • Parsons S.
        • Thompson T.N.
        • et al.
        Insights into sudden cardiac death: exploring the potential relevance of non-diagnostic autopsy findings.
        Eur Heart J. 2018; 40: 831-838
        • Curl C.L.
        • Danes V.R.
        • Bell J.R.
        • et al.
        Cardiomyocyte functional etiology in heart failure with preserved ejection fraction is distinctive-a new preclinical model.
        J Am Heart Assoc. 2018; 7e007451
        • Chandramouli C.
        • Reichelt M.E.
        • Curl C.L.
        • et al.
        Diastolic dysfunction is more apparent in STZ-induced diabetic female mice, despite less pronounced hyperglycemia.
        Sci Rep. 2018; 8: 2346
        • Shirani J.
        • Pick R.
        • Roberts W.C.
        • Maron B.J.
        Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death.
        J Am Coll Cardiol. 2000; 35: 36-44
        • Schneider C.A.
        • Rasband W.S.
        • Eliceiri K.W.
        NIH image to ImageJ: 25 years of image analysis.
        Nat Methods. 2012; 9: 671-675
        • Loek van Heerebeek M.
        • Borbély A.
        • Niessen H.W.
        • et al.
        Myocardial structure and function differ in systolic and diastolic heart failure.
        Circulation. 2006; 113: 1966-1973
        • Travers J.G.
        • Kamal F.A.
        • Robbins J.
        • Yutzey K.E.
        • Blaxall B.C.
        Cardiac fibrosis: the fibroblast awakens.
        Circ Res. 2016; 118: 1021-1040
        • Kai H.
        • Mori T.
        • Tokuda K.
        • et al.
        Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II.
        Hypertens Res. 2006; 29: 711-718
        • Sheppard M.N.
        • Steriotis A.K.
        • Sharma S.
        Letter by Sheppard et al regarding article, “Arrhythmic mitral valve prolapse and sudden cardiac death”.
        Circulation. 2016; 133: e458
        • Garbi M.
        • Lancellotti P.
        • Sheppard M.N.
        Mitral valve and left ventricular features in malignant mitral valve prolapse.
        Open Heart. 2018; 5e000925
        • Tanaka M.
        • Fujiwara H.
        • Onodera T.
        • Wu D.
        • Hamashima Y.
        • Kawai C.
        Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy.
        Br Heart J. 1986; 55: 575-581
        • Unverferth D.V.
        • Baker P.B.
        • Swift S.E.
        • et al.
        Extent of myocardial fibrosis and cellular hypertrophy in dilated cardiomyopathy.
        Am J Cardiol. 1986; 57: 816-820
        • McCarthy K.P.
        • Ring L.
        • Rana B.S.
        Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation.
        Eur J Echocardiogr. 2010; 11: i3-i9
        • Muthukumar L.
        • Rahman F.
        • Jan M.F.
        • et al.
        The pickelhaube sign: novel echocardiographic risk marker for malignant mitral valve prolapse syndrome.
        JACC Cardiovasc Imaging. 2017; 10: 1078-1080
        • Kitkungvan D.
        • Nabi F.
        • Kim R.J.
        • et al.
        Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse.
        J Am Coll Cardiol. 2018; 72: 823-834
        • Ermakov S.
        • Gulhar R.
        • Lim L.
        • et al.
        Left ventricular mechanical dispersion predicts arrhythmic risk in mitral valve prolapse.
        Heart. 2019; 105: 1063-1109
        • Dejgaard L.A.
        • Skjolsvik E.T.
        • Lie O.H.
        • et al.
        The mitral annulus disjunction arrhythmic syndrome.
        J Am Coll Cardiol. 2018; 72: 1600-1609