Advertisement

Epigenetics in atrial fibrillation: A reappraisal

  • Rosa Doñate Puertas
    Correspondence
    Address reprint requests and correspondence: Dr Rosa Doñate Puertas, Laboratory of Experimental Cardiology, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.
    Affiliations
    Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • Rishi Arora
    Affiliations
    Feinberg Cardiovascular and Renal Research Institute, Northwestern University–Feinberg School of Medicine, Chicago, Illinois
    Search for articles by this author
  • Sophie Rome
    Affiliations
    CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
    Search for articles by this author
  • Babken Asatryan
    Affiliations
    Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
    Search for articles by this author
  • Author Footnotes
    1 Pr H. Llewelyn Roderick and Pr Philippe Chevalier made equal contributions to this manuscript.
    H. Llewelyn Roderick
    Footnotes
    1 Pr H. Llewelyn Roderick and Pr Philippe Chevalier made equal contributions to this manuscript.
    Affiliations
    Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium

    K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Author Footnotes
    1 Pr H. Llewelyn Roderick and Pr Philippe Chevalier made equal contributions to this manuscript.
    Philippe Chevalier
    Correspondence
    Address reprint requests and correspondence: Pr Philippe Chevalier, Rhythmology Unit, Louis Pradel Cardiology Hospital, 28 Avenue du Doyen Lépine, 69677, Bron, France.
    Footnotes
    1 Pr H. Llewelyn Roderick and Pr Philippe Chevalier made equal contributions to this manuscript.
    Affiliations
    Rhythmology Unit, Hospices Civils de Lyon, University of Lyon, Lyon, France
    Search for articles by this author
  • Author Footnotes
    1 Pr H. Llewelyn Roderick and Pr Philippe Chevalier made equal contributions to this manuscript.
Published:January 10, 2021DOI:https://doi.org/10.1016/j.hrthm.2021.01.007
      Atrial fibrillation (AF) is the most common cardiac arrhythmia and an important cause of morbidity and mortality globally. Atrial remodeling includes changes in ion channel expression and function, structural alterations, and neural remodeling, which create an arrhythmogenic milieu resulting in AF initiation and maintenance. Current therapeutic strategies for AF involving ablation and antiarrhythmic drugs are associated with relatively high recurrence and proarrhythmic side effects, respectively. Over the last 2 decades, in an effort to overcome these issues, research has sought to identify the genetic basis for AF thereby gaining insight into the regulatory mechanisms governing its pathophysiology. Despite identification of multiple gene loci associated with AF, thus far none has led to a therapy, indicating additional contributors to pathology. Recently, in the context of expanding knowledge of the epigenome (DNA methylation, histone modifications, and noncoding RNAs), its potential involvement in the onset and progression of AF pathophysiology has started to emerge. Probing the role of various epigenetic mechanisms that contribute to AF may improve our knowledge of this complex disease, identify potential therapeutic targets, and facilitate targeted therapies. Here, we provide a comprehensive review of growing epigenetic features involved in AF pathogenesis and summarize the emerging epigenomic targets for therapy that have been explored in preclinical models of AF.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kornej J.
        • Börschel C.S.
        • Benjamin E.J.
        • Schnabel R.B.
        Epidemiology of atrial fibrillation in the 21st century.
        Circ Res. 2020; 127: 4-20
        • Shen M.J.
        • Arora R.
        • Jalife J.
        Atrial myopathy.
        JACC Basic Transl Sci. 2019; 4: 640-654
        • Nattel S.
        • Heijman J.
        • Zhou L.
        • Dobrev D.
        Molecular basis of atrial fibrillation pathophysiology and therapy.
        Circ Res. 2020; 127: 51-72
        • Wijesurendra R.S.
        • Casadei B.
        Mechanisms of atrial fibrillation.
        Heart. 2019; 105: 1860-1867
        • Calvo D.
        • Filgueiras-Rama D.
        • Jalife J.
        Mechanisms and drug development in atrial fibrillation.
        Pharmacol Rev. 2018; 70: 505-525
        • Wolkenhauer O.
        • Auffray C.
        • Jaster R.
        • Steinhoff G.
        • Dammann O.
        The road from systems biology to systems medicine.
        Pediatr Res. 2013; 73: 502-507
        • Trachana K.
        • Bargaje R.
        • Glusman G.
        • Price N.D.
        • Huang S.
        • Hood L.E.
        Taking systems medicine to heart.
        Circ Res. 2018; 122: 1276-1289
        • Censi F.
        • Cianfrocca C.
        • Purificato I.
        Atrial fibrillation and the 4P medicine.
        Ann Ist Super Sanita. 2013; 49: 247-248
        • Yan Z.T.
        • Huang J.M.
        • Luo W.L.
        • Liu J.W.
        • Zhou K.
        Combined metabolic, phenomic and genomic data to prioritize atrial fibrillation-related metabolites.
        Exp Ther Med. 2019; 17: 3929-3934
        • Prasher D.
        • Greenway S.C.
        • Singh R.B.
        The impact of epigenetics on cardiovascular disease.
        Biochem Cell Biol. 2020; 98: 12-22
        • Chiarella A.M.
        • Lu D.
        • Hathaway N.A.
        Epigenetic control of a local chromatin landscape.
        Int J Mol Sci. 2020; : 21
        • Clapier C.R.
        • Iwasa J.
        • Cairns B.R.
        • Peterson C.L.
        Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes.
        Nat Rev Mol Cell Biol. 2017; 18: 407-422
        • Gillette T.G.
        • Hill J.A.
        Readers, writers, and erasers: chromatin as the whiteboard of heart disease.
        Circ Res. 2015; 116: 1245-1253
        • Wright C.F.
        • West B.
        • Tuke M.
        • et al.
        Assessing the pathogenicity, penetrance, and expressivity of putative disease-causing variants in a population setting.
        Am J Hum Genet. 2019; 104: 275-286
        • Jin Z.
        • Liu Y.
        DNA methylation in human diseases.
        Genes Dis. 2018; 5: 1-8
        • Ambrosi C.
        • Manzo M.
        • Baubec T.
        Dynamics and context-dependent roles of DNA methylation.
        J Mol Biol. 2017; 429: 1459-1475
        • Wu X.
        • Zhang Y.
        TET-mediated active DNA demethylation: mechanism, function and beyond.
        Nat Rev Genet. 2017; 18: 517-534
        • Mahmood N.
        • Rabbani S.A.
        DNA methylation readers and cancer: mechanistic and therapeutic applications.
        Front Oncol. 2019; 9: 489
        • Lin H.
        • Yin X.
        • Xie Z.
        • et al.
        Methylome-wide association study of atrial fibrillation in Framingham Heart Study.
        Sci Rep. 2017; 7: 40377
        • Zhao G.
        • Zhou J.
        • Gao J.
        • et al.
        Genome-wide DNA methylation analysis in permanent atrial fibrillation.
        Mol Med Rep. 2017; 16: 5505-5514
        • Fatima N.
        • Schooley Jr., J.F.
        • Claycomb W.C.
        • Flagg T.P.
        Promoter DNA methylation regulates murine SUR1 (Abcc8) and SUR2 (Abcc9) expression in HL-1 cardiomyocytes.
        PLoS One. 2012; 7e41533
        • Shen K.
        • Tu T.
        • Yuan Z.
        • et al.
        DNA methylation dysregulations in valvular atrial fibrillation.
        Clin Cardiol. 2017; 40: 686-691
        • Kao Y.H.
        • Chen Y.C.
        • Chung C.C.
        • et al.
        Heart failure and angiotensin II modulate atrial Pitx2c promotor methylation.
        Clin Exp Pharmacol Physiol. 2013; 40: 379-384
        • Doñate Puertas R.
        • Meugnier E.
        • Romestaing C.
        • et al.
        Atrial fibrillation is associated with hypermethylation in human left atrium, and treatment with decitabine reduces atrial tachyarrhythmias in spontaneously hypertensive rats.
        Transl Res. 2017; 184: 57-67.e55
        • Tao H.
        • Song Z.Y.
        • Ding X.S.
        • Yang J.J.
        • Shi K.H.
        • Li J.
        Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification.
        Heart Fail Rev. 2018; 23: 789-799
        • Tao H.
        • Yang J.J.
        • Chen Z.W.
        • et al.
        DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2.
        Toxicology. 2014; 323: 42-50
        • Wouters J.
        • Vizoso M.
        • Martinez-Cardus A.
        • et al.
        Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma.
        BMC Med. 2017; 15: 101
        • Liu C.F.
        • Tang W.H.W.
        Epigenetics in cardiac hypertrophy and heart failure.
        JACC Basic Transl Sci. 2019; 4: 976-993
        • Kouzarides T.
        Chromatin modifications and their function.
        Cell. 2007; 128: 693-705
        • Narita T.
        • Weinert B.T.
        • Choudhary C.
        Functions and mechanisms of non-histone protein acetylation.
        Nat Rev Mol Cell Biol. 2019; 20: 156-174
        • Nielsen J.B.
        • Thorolfsdottir R.B.
        • Fritsche L.G.
        • et al.
        Biobank-driven genomic discovery yields new insight into atrial fibrillation biology.
        Nat Genet. 2018; 50: 1234-1239
        • Backs J.
        • Olson E.N.
        Control of cardiac growth by histone acetylation/deacetylation.
        Circ Res. 2006; 98: 15-24
        • Barnes C.E.
        • English D.M.
        • Cowley S.M.
        Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription.
        Essays Biochem. 2019; 63: 97-107
        • Borck P.C.
        • Guo L.-W.
        • Plutzky J.
        BET Epigenetic reader proteins in cardiovascular transcriptional programs.
        Circ Res. 2020; 126: 1190-1208
        • Brundel B.
        • Li J.
        • Zhang D.
        Role of HDACs in cardiac electropathology: therapeutic implications for atrial fibrillation.
        Biochim Biophys Acta Mol Cell Res. 2020; 1867: 118459
        • Zhang D.
        • Hu X.
        • Henning R.H.
        • Brundel B.J.
        Keeping up the balance: role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation.
        Cardiovasc Res. 2016; 109: 519-526
        • Song S.
        • Zhang R.
        • Mo B.
        • et al.
        EZH2 as a novel therapeutic target for atrial fibrosis and atrial fibrillation.
        J Mol Cell Cardiol. 2019; 135: 119-133
        • Zhang D.
        • Hu X.
        • Li J.
        • et al.
        Converse role of class I and class IIa HDACs in the progression of atrial fibrillation.
        J Mol Cell Cardiol. 2018; 125: 39-49
        • Zhou D.
        • Yang K.
        • Hu J.
        • Shi J.
        • Hu X.
        Noncoding RNAs in atrial fibrillation: current status and prospect.
        J Cardiovasc Pharmacol. 2020; 75: 10-17
        • Hu X.
        • Chen L.
        • Wu S.
        • et al.
        Integrative analysis reveals key circular RNA in atrial fibrillation.
        Front Genet. 2019; 10: 108
        • Zhang P.
        • Wu W.
        • Chen Q.
        • Chen M.
        Non-coding RNAs and their integrated networks.
        J Integr Bioinform. 2019; 16: 20190027
        • Friedman R.C.
        • Farh K.K.
        • Burge C.B.
        • Bartel D.P.
        Most mammalian mRNAs are conserved targets of microRNAs.
        Genome Res. 2009; 19: 92-105
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Doñate Puertas R.
        • Jalabert A.
        • Meugnier E.
        • Euthine V.
        • Chevalier P.
        • Rome S.
        Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation.
        PLoS One. 2018; 13e0196666
        • Clauss S.
        • Sinner M.F.
        • Kääb S.
        • Wakili R.
        The role of microRNAs in antiarrhythmic therapy for atrial fibrillation.
        Arrhythm Electrophysiol Rev. 2015; 4: 146-155
        • Mikhailov A.T.
        • Torrado M.
        Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation.
        J Mol Med (Berl). 2018; 96: 601-610
        • Jiang S.
        • Guo C.
        • Zhang W.
        • et al.
        The integrative regulatory network of circRNA, microRNA, and mRNA in atrial fibrillation.
        Front Genet. 2019; 10: 526
        • Costa M.C.
        • Cortez-Dias N.
        • Gabriel A.
        • et al.
        circRNA-miRNA cross-talk in the transition from paroxysmal to permanent atrial fibrillation.
        Int J Cardiol. 2019; 290: 134-137
        • Babapoor-Farrokhran S.
        • Gill D.
        • Rasekhi R.T.
        The role of long noncoding RNAs in atrial fibrillation.
        Heart Rhythm. 2020; 17: 1043-1049
        • Doñate Puertas R.
        • Millat G.
        • Ernens I.
        • et al.
        Atrial structural remodeling gene variants in patients with atrial fibrillation.
        BioMed Res Int. 2018; 2018: 4862480
        • McRae C.
        • Kapoor A.
        • Kanda P.
        • Hibbert B.
        • Davis D.R.
        Systematic review of biological therapies for atrial fibrillation.
        Heart Rhythm. 2019; 16: 1399-1407
        • Trivedi A.
        • Hoffman J.
        • Arora R.
        Gene therapy for atrial fibrillation: how close to clinical implementation?.
        Int J Cardiol. 2019; 296: 177-183
        • Ganesan A.
        • Arimondo P.B.
        • Rots M.G.
        • Jeronimo C.
        • Berdasco M.
        The timeline of epigenetic drug discovery: from reality to dreams.
        Clin Epigenetics. 2019; 11: 174
        • Roberti A.
        • Valdes A.F.
        • Torrecillas R.
        • Fraga M.F.
        • Fernandez A.F.
        Epigenetics in cancer therapy and nanomedicine.
        Clin Epigenetics. 2019; 11: 81
        • Pechalrieu D.
        • Etievant C.
        • Arimondo P.B.
        DNA methyltransferase inhibitors in cancer: from pharmacology to translational studies.
        Biochem Pharmacol. 2017; 129: 1-13
        • Morel D.
        • Jeffery D.
        • Aspeslagh S.
        • Almouzni G.
        • Postel-Vinay S.
        Combining epigenetic drugs with other therapies for solid tumours: past lessons and future promise.
        Nat Rev Clin Oncol. 2020; 17: 91-107
        • Sun Y.
        • Sun Y.
        • Yue S.
        • Wang Y.
        • Lu F.
        Histone deacetylase inhibitors in cancer therapy.
        Curr Top Med Chem. 2018; 18: 2420-2428
        • Scholz B.
        • Schulte J.S.
        • Hamer S.
        • et al.
        HDAC (histone deacetylase) inhibitor valproic acid attenuates atrial remodeling and delays the onset of atrial fibrillation in mice.
        Circ Arrhythm Electrophysiol. 2019; 12e007071
        • Chowdhury S.K.
        • Liu W.
        • Zi M.
        • et al.
        Stress-activated kinase mitogen-activated kinase kinase-7 governs epigenetics of cardiac repolarization for arrhythmia prevention.
        Circulation. 2017; 135: 683-699
        • Kee H.J.
        • Sohn I.S.
        • Nam K.I.
        • et al.
        Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding.
        Circulation. 2006; 113: 51-59
        • Seki M.
        • LaCanna R.
        • Powers J.C.
        • et al.
        Class I histone deacetylase inhibition for the treatment of sustained atrial fibrillation.
        J Pharmacol Exp Ther. 2016; 358: 441-449
        • Zhang D.
        • Wu C.T.
        • Qi X.
        • et al.
        Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation.
        Circulation. 2014; 129: 346-358
        • Reddy R.G.
        • Surineni G.
        • Bhattacharya D.
        • et al.
        Crafting carbazole-based vorinostat and tubastatin-a-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions.
        ACS Omega. 2019; 4: 17279-17294
        • Alqahtani A.
        • Choucair K.
        • Ashraf M.
        • et al.
        Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy.
        Future Sci OA. 2019; 5: FSO372
        • Stratton M.S.
        • Bagchi R.A.
        • Felisbino M.B.
        • et al.
        Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation.
        Circ Res. 2019; 125: 662-677
        • Felisbino M.B.
        • McKinsey T.A.
        Epigenetics in cardiac fibrosis: emphasis on inflammation and fibroblast activation.
        JACC Basic Transl Sci. 2018; 3: 704-715
        • Jones P.A.
        • Issa J.P.
        • Baylin S.
        Targeting the cancer epigenome for therapy.
        Nat Rev Genet. 2016; 17: 630-641
        • Sun X.
        • Gao H.
        • Yang Y.
        • et al.
        PROTACs: great opportunities for academia and industry.
        Signal Transduct Target Ther. 2019; 4: 64
        • An Z.
        • Lv W.
        • Su S.
        • Wu W.
        • Rao Y.
        Developing potent PROTACs tools for selective degradation of HDAC6 protein.
        Protein Cell. 2019; 10: 606-609
        • Tomaselli D.
        • Lucidi A.
        • Rotili D.
        • Mai A.
        Epigenetic polypharmacology: a new frontier for epi-drug discovery.
        Med Res Rev. 2020; 40: 190-244
        • Benzoni P.
        • Campostrini G.
        • Landi S.
        • et al.
        Human iPSC modeling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes.
        Cardiovasc Res. 2020; 116: 1147-1160
        • van Kampen S.J.
        • van Rooij E.
        CRISPR craze to transform cardiac biology.
        Trends Mol Med. 2019; 25: 791-802
        • Zhao J.
        • Aslanidi O.
        • Kuklik P.
        • et al.
        Editorial: recent advances in understanding the basic mechanisms of atrial fibrillation using novel computational approaches.
        Front Physiol. 2019; 10: 1065
        • Tucker N.R.
        • Chaffin M.
        • Fleming S.J.
        • et al.
        Transcriptional and cellular diversity of the human heart.
        Circulation. 2020; 142: 466-482
        • Hill M.C.
        • Kadow Z.A.
        • Li L.
        • Tran T.T.
        • Wythe J.D.
        • Martin J.F.
        A cellular atlas of Pitx2-dependent cardiac development.
        Development. 2019; 146: dev180398
        • Pineiro-Yanez E.
        • Reboiro-Jato M.
        • Gomez-Lopez G.
        • et al.
        PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data.
        Genome Med. 2018; 10: 41
        • Choe W.S.
        • Kang J.H.
        • Choi E.K.
        • et al.
        A genetic risk score for atrial fibrillation predicts the response to catheter ablation.
        Korean Circ J. 2019; 49: 338-349