Advertisement

Interpreting device diagnostics for lead failure

Published:September 27, 2021DOI:https://doi.org/10.1016/j.hrthm.2021.09.027
      Implantable cardioverter-defibrillators (ICDs) incorporate automated, lead-monitoring alerts (alerts) and other diagnostics to detect defibrillation lead failure (LF) and minimize its adverse clinical consequences. Partial conductor fractures cause oversensing, but pacing or high-voltage alerts for high impedance detect only complete conductor fracture. In both pacing and high-voltage insulation breaches, low-impedance alerts require complete breach with metal-to-metal contact. Oversensing alerts for pace-sense LF also require complete breach, but not metal-to metal contact. Electrograms (EGMs) from leads with confirmed fractures have characteristics findings. In insulation breach, however, oversensed EGMs reflect characteristics of the source signal. Oversensing alerts that operate on the sensing channel analyze R-R intervals for 2 patterns typical of LF but uncommon in other conditions: a rapidly increasing count of “nonphysiological” short intervals and rapid “nonsustained tachycardias.” These alerts are sensitive but nonspecific. Alerts that compare sensing and shock channels define oversensing as sensed events that do not correlate temporally with EGMs on the shock channel. Their performance depends on implementation. Specific advantages and limitations are reviewed. Most ICDs measure impedance using subthreshold pulses. Patterns in impedance trends provide diagnostic information, whether or not an alert is triggered. Gradual increases in impedance do not indicate structural LF, but they may cause failed defibrillation if shock impedance is high enough. Because impedance-threshold alerts are insensitive, normal impedance trends never exclude LF, but an abrupt increase that triggers an alert almost always indicates a header connection issue or LF. Methods for discriminating connection issues from LF are reviewed.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nair S.G.
        • Swerdlow C.D.
        Monitoring for and diagnosis of lead dysfunction.
        Card Electrophysiol Clin. 2018; 10: 573-599
        • Swerdlow C.D.
        • Ellenbogen K.A.
        Implantable cardioverter-defibrillator leads: design, diagnostics, and management.
        Circulation. 2013; 128: 2062-2071
        • Swerdlow C.D.
        • Kalahasty G.
        • Ellenbogen K.A.
        Implantable cardiac defibrillator lead failure and management.
        J Am Coll Cardiol. 2016; 67: 1358-1368
        • Swerdlow C.D.
        • Asirvatham S.J.
        • Ellenbogen K.A.
        • Friedman P.A.
        Troubleshooting implanted cardioverter defibrillator sensing problems I.
        Circ Arrhythm Electrophysiol. 2014; 7: 1237-1261
        • Swerdlow C.D.
        • Koneru J.N.
        • Gunderson B.
        • Kroll M.W.
        • Ploux S.
        • Ellenbogen K.A.
        Impedance in the diagnosis of lead malfunction.
        Circ Arrhythm Electrophysiol. 2020; 13e008092
        • Swerdlow C.D.
        • Porterfield J.E.
        • Kottam A.G.
        • Kroll M.W.
        Why low-voltage shock impedance measurements fail to reliably detect insulation breaches in transvenous defibrillation leads.
        Heart Rhythm. 2019; 16: 1729-1737
        • Swerdlow C.D.
        • Gunderson B.D.
        • Ousdigian K.T.
        • et al.
        Downloadable algorithm to reduce inappropriate shocks caused by fractures of implantable cardioverter-defibrillator leads.
        Circulation. 2008; 118: 2122-2129
        • Gunderson B.D.
        • Swerdlow C.D.
        • Wilcox J.M.
        • Hayman J.E.
        • Ousdigian K.T.
        • Ellenbogen K.A.
        Causes of ventricular oversensing in implantable cardioverter-defibrillators: implications for diagnosis of lead fracture.
        Heart Rhythm. 2010; 7: 626-633
        • Swerdlow C.D.
        • Sachanandani H.
        • Gunderson B.D.
        • Ousdigian K.T.
        • Hjelle M.
        • Ellenbogen K.A.
        Preventing overdiagnosis of implantable cardioverter-defibrillator lead fractures using device diagnostics.
        J Am Coll Cardiol. 2011; 57: 2330-2339
        • Ellenbogen K.A.
        • Gunderson B.D.
        • Stromberg K.D.
        • Swerdlow C.D.
        Performance of Lead Integrity Alert to assist in the clinical diagnosis of implantable cardioverter defibrillator lead failures: analysis of different implantable cardioverter defibrillator leads.
        Circ Arrhythm Electrophysiol. 2013; 6: 1169-1177
        • Swerdlow C.D.
        • Kass R.M.
        • Khoynezhad A.
        • Tang S.
        Inside-out insulation failure of a defibrillator lead with abrasion-resistant coating.
        Heart Rhythm. 2013; 10: 1063-1066
        • Swerdlow C.D.
        • Gunderson B.D.
        • Ousdigian K.T.
        • Abeyratne A.
        • Sachanandani H.
        • Ellenbogen K.A.
        Downloadable software algorithm reduces inappropriate shocks caused by implantable cardioverter-defibrillator lead fractures: a prospective study.
        Circulation. 2010; 122: 1449-1455
        • Ng J.
        • Chopra N.
        • Barbhaiya C.
        • et al.
        Incidence of nonphysiologic short VV intervals detected by the sensing integrity counter with integrated bipolar compared with true bipolar leads: clinically inconsequential or cause for concern?.
        J Interv Card Electrophysiol. 2014; 39: 281-285
        • Steinberg C.
        • Padfield G.J.
        • Hahn E.
        • et al.
        Lead integrity alert is useful for assessment of performance of Biotronik Linox leads.
        J Cardiovasc Electrophysiol. 2015; 26: 1340-1345
        • Ploux S.
        • Swerdlow C.D.
        • Strik M.
        • et al.
        Towards eradication of inappropriate therapies for ICD lead failure by combining comprehensive remote monitoring and lead noise alerts.
        J Cardiovasc Electrophysiol. 2018; 29: 1125-1134
        • Poole
        • Swerdlow C.
        • Khaldoun K.
        • et al.
        Clinical performance of implantable cardioverter defibrillator lead monitoring diagnostics.
        Heart Rhythm, 2021 (in revision)
        • Welte N.
        • Strik M.
        • Eschalier R.
        • et al.
        Multicenter investigation of an implantable cardioverter-defibrillator algorithm to detect oversensing.
        Heart Rhythm. 2017; 14: 1008-1015
        • Koneru J.N.
        • Kaszala K.
        • Bordachar P.
        • Shehata M.
        • Swerdlow C.
        • Ellenbogen K.A.
        Spectrum of issues detected by an ICD diagnostic alert that utilizes far-field electrograms: clinical implications.
        Heart Rhythm. 2015; 12: 957-967
        • Koneru J.N.
        • Swerdlow C.D.
        • Ploux S.
        • et al.
        Mechanisms of undersensing by a noise detection algorithm that utilizes far-field electrograms with near-field bandpass filtering.
        J Cardiovasc Electrophysiol. 2017; 28: 224-232
        • Brown M.L.
        • Swerdlow C.D.
        Sensing and detection in Medtronic implantable cardioverter defibrillators.
        Herzschrittmacherther Elektrophysiol. 2016; 27: 193-212
        • Koneru J.N.
        • Gunderson B.D.
        • Sachanandani H.
        • et al.
        Diagnosis of high-voltage conductor fractures in Sprint Fidelis leads.
        Heart Rhythm. 2013; 10: 813-818
        • Hauser R.G.
        • Sengupta J.
        • Casey S.
        • Tang C.
        • Stanberry L.I.
        • Abdelhadi R.
        High shocking and pacing impedances due to defibrillation lead calcification.
        J Interv Card Electrophysiol. 2020; 58: 253-259
        • Zaman J.A.B.
        • Chua K.
        • Sovari A.A.
        • et al.
        Early diagnosis of defibrillation lead dislodgement.
        JACC Clin Electrophysiol. 2018; 4: 1075-1088
        • Tanawuttiwat T.
        • Berger R.D.
        • Love C.J.
        Intermittent high impedance from the lead-device compatibility problem.
        Heart Rhythm. 2019; 16: 1107-1111
        • Pignalberi C.
        • Mariani M.V.
        • Castro A.
        • et al.
        Sporadic high pacing and shock impedance on remote monitoring in hybrid implantable cardioverter-defibrillator systems: clinical impact and management.
        Heart Rhythm. 2021; 18: 1292-1300
        • Monkhouse C.
        • Cambridge A.
        • Chow A.W.C.
        • Behar J.M.
        High-voltage impedance rise; mechanism and management in patients with transvenous implantable cardioverter-defibrillators: a case series.
        Eur Heart J Case Rep. 2019; 3: 1-8
        • Kella D.K.
        • Stambler B.S.
        Failure of Lead Integrity Alert to detect implantable cardioverter-defibrillator lead-system failure in a pacemaker-dependent patient.
        HeartRhythm Case Reports. 2021; 7: 3
        • Hu Y.L.
        • Kasirajan V.
        • Tang D.G.
        • et al.
        Prospective evaluation of implantable cardioverter-defibrillator lead function during and after left ventricular assist device implantation.
        JACC Clin Electrophysiol. 2016; 2: 343-354
        • Hauser R.G.
        • Sengupta J.
        • Schloss E.J.
        • Stanberry L.I.
        • Wananu M.K.
        • Abdelhadi R.
        Internal insulation breaches in an implantable cardioverter-defibrillator lead with redundant conductors.
        Heart Rhythm. 2019; 16: 1215-1222
        • Kollmann D.T.
        • Swerdlow C.D.
        • Kroll M.W.
        • et al.
        ICD lead failure detection in chronic soaked leads.
        Conf Proc IEEE Eng Med Biol Soc. 2015; 2015: 5667-5671
        • Pillarisetti J.
        • Gruslova A.
        • Porterfield J.
        • et al.
        A novel high frequency lead integrity testing device detects ICD lead insulation breaches.
        Heart Rhythm. 2021; 18: S303
        • Guedon-Moreau L.
        • Kouakam C.
        • Klug D.
        • et al.
        Decreased delivery of inappropriate shocks achieved by remote monitoring of ICD: a substudy of the ECOST trial.
        J Cardiovasc Electrophysiol. 2014; 25: 763-770
        • Ploux S.
        • Eschalier R.
        • Varma N.
        • et al.
        Enhanced cardiac device management utilizing the random EGM: a neglected feature of remote monitoring.
        Heart Rhythm. 2016; 13: 602-608