Advertisement

Pediatric T-wave memory after accessory pathway ablation in Wolff-Parkinson-White syndrome

Published:November 09, 2021DOI:https://doi.org/10.1016/j.hrthm.2021.11.007

      Abstract

      Background

      Altered ventricular depolarization due to manifest accessory pathway conduction, Wolff-Parkinson-White syndrome, leads to repolarization abnormalities that persist after pathway ablation. The term T-wave memory (TWM) has been applied to these changes, as the post-ablation T-wave vector “remembers” the preexcited QRS vector. In adults, these abnormalities can be misinterpreted as ischemia leading to unnecessary interventions. To date, there have been no comprehensive studies evaluating this phenomenon in the pediatric population.

      Objective

      Define TWM in the pediatric population, identify pre-ablation risk factors, and delineate the timeline of recovery.

      Methods

      Pre- and post-ablation ECGs in patients 25 years were analyzed over a 5 year period. Frontal plane QTc interval, T-wave axis, QRST angle and T-wave inversions were used to identify patients with TWM. Univariate analysis was performed to determine the association of pre-ablation ECG features with the outcome of TWM.

      Results

      TWM was present in 42% of pediatric patients, with resolution occurring within 3 months of ablation. Pre-ablation QRS axis <0° was a strong predictor of TWM (OR 15.2; CI 5.7-40), followed by posteroseptal pathway location (right posteroseptal OR 8.9, CI 4.2-18.8; left posteroseptal OR 6.1, CI 1.7-22.3). The degree of pre-excitation had a modest association with the development of TWM. No adverse events were observed.

      Conclusion

      TWM is less common in children compared to adults, and normalization occurred within 3 months post-ablation. The most predictive features for the development of TWM include a leftward preexcited QRS axis and posteroseptal pathway location.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chatterjee K.
        • Harris A.M.
        • Davies J.G.
        • Leatham A.
        T-wave changes after artificial pacing.
        Lancet. 1969; 1: 759-760
        • Geller J.C.
        • Rosen M.R.
        Persistent T-wave changes after alteration of the ventricular activation sequence. New insights into cellular mechanisms of “cardiac memory.
        ” Circulation. 1993; 88: 1811-1819
        • Rosenbaum M.B.
        • Blanco H.H.
        • Elizari M.V.
        • Lázzari J.O.
        • Davidenko J.M.
        Electrotonic modulation of the T wave and cardiac memory.
        Am J Cardiol. 1982; 50: 213-222
        • Shvilkin A.
        • Ho K.K.L.
        • Rosen M.R.
        • Josephson M.E.
        T-vector direction differentiates postpacing from ischemic T-wave inversion in precordial leads.
        Circulation. 2005; 111: 969-974
        • Ghosh Subham.
        • Rhee Edward K.
        • Avari Jennifer N.
        • Woodard Pamela K.
        • Rudy Yoram.
        Cardiac Memory in Patients With Wolff-Parkinson-White Syndrome.
        Circulation. 2008; 118: 907-915
        • Byrne R.
        • Filippone L.
        Benign persistent T-wave inversion mimicking ischemia after left bundle-branch block--cardiac memory.
        Am J Emerg Med. 2010; 28 (747.e5–6)
        • Sakamoto Y.
        • Inden Y.
        • Okamoto H.
        • et al.
        T-wave changes of cardiac memory caused by frequent premature ventricular contractions originating from the right ventricular outflow tract.
        J Cardiovasc Electrophysiol. 2019; 30: 1549-1556
        • Nakagawa T.
        • Yagi T.
        • Ishida A.
        • et al.
        Differences between cardiac memory T wave changes after idiopathic left ventricular tachycardia and ischemic T wave inversion induced by acute coronary syndrome.
        J Electrocardiol. 2016; 49: 596-602
        • Wylie Jr., J.V.
        • Zimetbaum P.
        • Josephson M.E.
        • Shvilkin A.
        Cardiac memory induced by QRS widening due to propafenone toxicity.
        Pacing Clin Electrophysiol. 2007; 30: 1161-1164
        • Helguera M.E.
        • Pinski S.L.
        • Sterba R.
        • Trohman R.G.
        Memory T waves after radiofrequency catheter ablation of accessory atrioventricular connections in Wolff-Parkinson-White syndrome.
        J Electrocardiol. 1994; 27: 243-249
        • Nirei T.
        • Kasanuki H.
        • Ohnishi S.
        • Tamaki A.
        • Toyoshima Y.
        • Hosoda S.
        Cardiac memory in patients with intermittent Wolff-Parkinson-White syndrome.
        J Electrocardiol. 1997; 30: 323-329
        • Takada Y.
        • Inden Y.
        • Akahoshi M.
        • et al.
        Changes in repolarization properties with long-term cardiac memory modify dispersion of repolarization in patients with Wolff-Parkinson-White syndrome.
        J Cardiovasc Electrophysiol. 2002; 13: 324-330
        • Wecke L.
        • Poçi D.
        • Schwieler J.
        • et al.
        Vectorcardiography shows cardiac memory and repolarization heterogeneity after ablation of accessory pathways not apparent on ECG.
        Int J Cardiol. 2013; 166: 152-157
        • Chen-Scarabelli C.
        • Scarabelli T.M.
        T-wave inversion: cardiac memory or myocardial ischemia?.
        Am J Emerg Med. 2009; 27 (898.e1–4)
        • Tafoya C.
        • Singh A.
        Cardiac Memory: A Case Report and Review of the Literature.
        J Emerg Med. 2019; 57: 85-93
        • Dickinson D.F.
        The normal ECG in childhood and adolescence.
        Heart. 2005; 91: 1626-1630
        • Herweg B.
        • Fisher J.D.
        • Ilercil A.
        • et al.
        Cardiac memory after radiofrequency ablation of accessory pathways: the post-ablation T wave does not forget the pre-excited QRS.
        J Interv Card Electrophysiol. 1999; 3: 263-272
        • Saarel E.V.
        • Granger S.
        • Kaltman J.R.
        • et al.
        Electrocardiograms in Healthy North American Children in the Digital Age.
        Circ Arrhythm Electrophysiol. 2018; 11 (e005808)
        • Kamphuis V.P.
        • Blom N.A.
        • van Zwet E.W.
        • et al.
        Normal values of the ventricular gradient and QRS-T angle, derived from the pediatric electrocardiogram.
        J Electrocardiol. 2018; 51: 490-495
        • Liu S.
        • Yuan S.
        • Hertervig E.
        • Kongstad O.
        • Olsson S.B.
        Gender and atrioventricular conduction properties of patients with symptomatic atrioventricular nodal reentrant tachycardia and Wolff-Parkinson-White syndrome.
        J Electrocardiol. 2001; 34: 295-301
        • Davignon A.
        • Rautaharju P.
        • Boisselle E.
        • Soumis F.
        • Mégélas M.
        • Choquette A.
        Normal ECG standards for infants and children.
        Pediatr Cardiol. 1980; 1: 123-131
        • Geller J.C.
        • Carlson M.D.
        • Goette A.
        • Reek S.
        • Hartung W.M.
        • Klein H.U.
        Persistent T-wave changes after radiofrequency catheter ablation of an accessory connection (Wolff-parkinson-white syndrome) are caused by “cardiac memory.
        ” Am Heart J. 1999; 138: 987-993
        • Trajkov I.
        • Poposka L.
        • Kovacevic D.
        • Dobrkovic L.
        • Georgievska-Ismail L.
        • Gjorgov N.
        Cardiac memory (t-wave memory) after ablation of posteroseptal accessory pathway.
        Prilozi. 2008; 29: 167-182
        • Kalbfleisch S.J.
        • Sousa J.
        • el-Atassi R.
        • Calkins H.
        • Langberg J.
        • Morady F.
        Repolarization abnormalities after catheter ablation of accessory atrioventricular connections with radiofrequency current.
        J Am Coll Cardiol. 1991; 18: 1761-1766
        • Wecke L.
        • Gadler F.
        • Linde C.
        • Lundahl G.
        • Rosen M.R.
        • Bergfeldt L.
        Temporal characteristics of cardiac memory in humans: vectorcardiographic quantification in a model of cardiac pacing.
        Heart Rhythm. 2005; 2: 28-34
        • Aunes-Jansson M.
        • Wecke L.
        • Lurje L.
        • Bergfeldt L.
        • Edvardsson N.
        T wave inversions following ablation of 125 posteroseptal accessory pathways.
        Int J Cardiol. 2006; 106: 75-81
        • Shvilkin A.
        • Danilo Jr., P.
        • Wang J.
        • et al.
        Evolution and resolution of long-term cardiac memory.
        Circulation. 1998; 97: 1810-1817
        • Schneider H.E.
        • Kriebel T.
        • Gravenhorst V.D.
        • Paul T.
        Incidence of coronary artery injury immediately after catheter ablation for supraventricular tachycardias in infants and children.
        Heart Rhythm. 2009; 6: 461-467
        • Roberts-Thomson K.C.
        • Steven D.
        • Seiler J.
        • et al.
        Coronary artery injury due to catheter ablation in adults: presentations and outcomes.
        Circulation. 2009; 120: 1465-1473
        • del Balzo U.
        • Rosen M.R.
        T wave changes persisting after ventricular pacing in canine heart are altered by 4-aminopyridine but not by lidocaine. Implications with respect to phenomenon of cardiac “memory.
        ” Circulation. 1992; 85: 1464-1472