Adding Six Short Lines on Pulmonary Vein Isolation Circumferences Reduces Recurrence of Paroxysmal Atrial Fibrillation: Results from the Multicenter, Single-blind, Randomized Trial

Published:November 11, 2021DOI:



      Pulmonary vein isolation (PVI) for paroxysmal atrial fibrillation (AF) is associated with a non-negligible long-term recurrence rate.


      The aim of this study was to investigate whether PVI combined with six short ablation lines on the PVI circumferences (PVI+6L group) yields higher success rates than PVI alone (PVI group).


      In this multicenter, single-blind, randomized trial, a total of 390 patients with paroxysmal AF were randomly assigned into PVI group (n=193) or PVI+6L group (n=197). The primary endpoint was freedom from AF/atrial tachycardia recurrence between 91 and 365 days. The secondary endpoints included AF burden, procedural parameters, and complications.


      Freedom from atrial tachyarrhythmia was achieved in in 160 of 197 patients (81.2%) in the PVI+6L group and 142 of 193 patients (73.6%) in the PVI group (hazard ratio, 0.61; 95% confidence interval, 0.39 to 0.97; P=0.040). Mean AF burden tended to be lower in PVI+6L group as compared to PVI group (1.95% vs. 0.53%, P=0.097). Procedure and ablation time were slightly longer in the PVI+6L group than in the PVI group (130 ± 25 vs. 121 ± 28 min, P=0.002, and 46 ± 14 vs. 41 ± 16 min, P=0.001, respectively) while X-ray exposure was similar (60 ± 54 vs. 61 ± 60 s, P=0.964). Complications occurred in three patients (1.6%) in the PVI group and in three patients (1.5%) in the PVI+6L group.


      In patients with paroxysmal AF undergoing catheter ablation, adding six short ablation lines on the PVI circumferences could reduce recurrence rate of AF.

      Key words

      To read this article in full you will need to make a payment
      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Calkins H.
        • Hindricks G.
        • Cappato R.
        • et al.
        2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation.
        Heart Rhythm. 2017; 14: e275-e444
        • Poole J.E.
        • Bahnson T.D.
        • Monahan K.H.
        • et al.
        Recurrence of Atrial Fibrillation After Catheter Ablation or Antiarrhythmic Drug Therapy in the CABANA Trial.
        J Am Coll Cardiol. 2020; 75: 3105-3118
        • Mark D.B.
        • Anstrom K.J.
        • Sheng S.
        • et al.
        Effect of Catheter Ablation vs Medical Therapy on Quality of Life Among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial.
        JAMA. 2019; 321: 1275-1285
        • Weerasooriya R.
        • Khairy P.
        • Litalien J.
        • et al.
        Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up?.
        J Am Coll Cardiol. 2011; 57: 160-166
        • Bertaglia E.
        • Tondo C.
        • De Simone A.
        • et al.
        Does catheter ablation cure atrial fibrillation? Single-procedure outcome of drug-refractory atrial fibrillation ablation: a 6-year multicentre experience.
        Europace. 2010; 12: 181-187
        • Katritsis D.G.
        • Pokushalov E.
        • Romanov A.
        • et al.
        Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial.
        J Am Coll Cardiol. 2013; 62: 2318-2325
        • Pappone C.
        • Santinelli V.
        • Manguso F.
        • et al.
        Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation.
        Circulation. 2004; 109: 327-334
        • Tan A.Y.
        • Li H.
        • Wachsmann-Hogiu S.
        • Chen L.S.
        • Chen P.S.
        • Fishbein M.C.
        Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction.
        J Am Coll Cardiol. 2006; 48: 132-143
        • Rajappan K.
        • Kistler P.M.
        • Earley M.J.
        • et al.
        Acute and chronic pulmonary vein reconnection after atrial fibrillation ablation: a prospective characterization of anatomical sites.
        Pacing Clin Electrophysiol. 2008; 31: 1598-1605
        • Rademakers L.M.
        • Romero I.
        • Simmers T.A.
        • van der Voort P.H.
        • Meijer A.M.
        • Dekker L.R.
        Spatial distribution of electrical reconnection after pulmonary vein isolation in patients with recurrent paroxysmal atrial fibrillation.
        Neth Heart J. 2016; 24: 481-487
        • Katritsis D.
        • Giazitzoglou E.
        • Sougiannis D.
        • Voridis E.
        • Po S.S.
        Complex fractionated atrial electrograms at anatomic sites of ganglionated plexi in atrial fibrillation.
        Europace. 2009; 11: 308-315
        • Chee J.
        • Kalogeropoulos A.P.
        • Almasry I.
        • Singh A.
        • Rashba E.
        • Fan R.
        Identification and Endocardial Ablation of the Ligament of Marshall for Pulmonary Vein Isolation.
        JACC Clin Electrophysiol. 2021; 7: 283-291
        • Kamanu S.
        • Tan A.Y.
        • Peter C.T.
        • Hwang C.
        • Chen P.S.
        Vein of Marshall activity during sustained atrial fibrillation.
        J Cardiovasc Electrophysiol. 2006; 17: 839-846
        • Tan A.Y.
        • Chou C.C.
        • Zhou S.
        • et al.
        Electrical connections between left superior pulmonary vein, left atrium, and ligament of Marshall: implications for mechanisms of atrial fibrillation.
        Am J Physiol Heart Circ Physiol. 2006; 290: H312-H322
        • Chugh A.
        • Gurm H.S.
        • Krishnasamy K.
        • et al.
        Spectrum of atrial arrhythmias using the ligament of Marshall in patients with atrial fibrillation.
        Heart Rhythm. 2018; 15: 17-24
        • Morillo C.A.
        • Verma A.
        • Connolly S.J.
        • et al.
        Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial.
        JAMA. 2014; 311: 692-700
        • Cosedis Nielsen J.
        • Johannessen A.
        • Raatikainen P.
        • et al.
        Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation.
        N Engl J Med. 2012; 367: 1587-1595
        • Wang X.H.
        • Liu X.
        • Sun Y.M.
        • Shi H.F.
        • Zhou L.
        • Gu J.N.
        Pulmonary vein isolation combined with superior vena cava isolation for atrial fibrillation ablation: a prospective randomized study.
        Europace. 2008; 10: 600-605
        • Zhao Y.
        • Di Biase L.
        • Trivedi C.
        • et al.
        Importance of non-pulmonary vein triggers ablation to achieve long-term freedom from paroxysmal atrial fibrillation in patients with low ejection fraction.
        Heart Rhythm. 2016; 13: 141-149
        • Nuhrich J.M.
        • Steven D.
        • Berner I.
        • et al.
        Impact of biatrial defragmentation in patients with paroxysmal atrial fibrillation: results from a randomized prospective study.
        Heart Rhythm. 2014; 11: 1536-1542
        • Steinberg J.S.
        • Shabanov V.
        • Ponomarev D.
        • et al.
        Effect of Renal Denervation and Catheter Ablation vs Catheter Ablation Alone on Atrial Fibrillation Recurrence Among Patients With Paroxysmal Atrial Fibrillation and Hypertension: The ERADICATE-AF Randomized Clinical Trial.
        JAMA. 2020; 323: 248-255
        • Cabrera J.A.
        • Ho S.Y.
        • Climent V.
        • Sanchez-Quintana D.
        The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation.
        Eur Heart J. 2008; 29: 356-362
        • Ho S.Y.
        • Cabrera J.A.
        • Tran V.H.
        • Farre J.
        • Anderson R.H.
        • Sanchez-Quintana D.
        Architecture of the pulmonary veins: relevance to radiofrequency ablation.
        Heart. 2001; 86: 265-270
        • McLellan A.J.
        • Ling L.H.
        • Azzopardi S.
        • et al.
        A minimal or maximal ablation strategy to achieve pulmonary vein isolation for paroxysmal atrial fibrillation: a prospective multi-centre randomized controlled trial (the Minimax study).
        Eur Heart J. 2015; 36: 1812-1821
        • Stavrakis S.
        • Humphrey M.B.
        • Scherlag B.J.
        • et al.
        Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation.
        J Am Coll Cardiol. 2015; 65: 867-875
        • Leftheriotis D.
        • Flevari P.
        • Kossyvakis C.
        • et al.
        Acute effects of unilateral temporary stellate ganglion block on human atrial electrophysiological properties and atrial fibrillation inducibility.
        Heart Rhythm. 2016; 13: 2111-2117
        • Mikhaylov E.
        • Kanidieva A.
        • Sviridova N.
        • et al.
        Outcome of anatomic ganglionated plexi ablation to treat paroxysmal atrial fibrillation: a 3-year follow-up study.
        Europace. 2011; 13: 362-370
        • Hwang C.
        • Chen P.S.
        Ligament of Marshall: why it is important for atrial fibrillation ablation.
        Heart Rhythm. 2009; 6: S35-40
        • Derval N.
        • Duchateau J.
        • Denis A.
        • et al.
        Marshall bundle elimination, Pulmonary vein isolation, and Line completion for ANatomical ablation of persistent atrial fibrillation (Marshall-PLAN): Prospective, single-center study.
        Heart Rhythm. 2021; 18: 529-537