Conclusion: Our study demonstrates that both US and fluoro-guided AV catheterization for CIED are highly effective and safe techniques. Despite similar AV access time, compared to fluo guidance, US reduce time radiation exposure by 20%.

Conclusion: The ControlRad system effectively reduces scatter radiation exposure to the operators and patient during CEID procedures without prolonging procedure times or complications.

CI-523-03

REDEFINE-EP: A PROSPECTIVE, RANDOMIZED EVALUATION OF THE CONTROLRAD SYSTEM TO REDUCE RADIATION EXPOSURE DURING CARDIAC ELECTRONIC IMPLANTABLE DEVICE PROCEDURES

Nishaki Mehta MD, FHRS; Joshua France BS; Kuldeep Shah MD; Ilana B. Kutinsky DO, FHRS; Brian D. Williamson MD; Anil K. Goel MD; Simon R. Dixon MBChB and David E. Haines MD, FHRS

Background: The ControlRad (CR) system utilizes a dynamic collimator that allows high resolution imaging in an operator-selected region of interest, with significant radiation dose reduction for the remaining field of view.

Objective: The aim of this study was to evaluate the effectiveness of the CR system to reduce scatter radiation during cardiac electronic implantable device (CEID) procedures.

Methods: In a prospective, single center study, 90 patients undergoing simple (single or dual chamber CEID) or complex (left bundle pacing and biventricular CEID) procedures were randomly assigned to undergo the procedure with or without the CR system (CR = 43, No CR = 47). The primary study endpoint was the scatter radiation dose to the primary operator measured using a standard aluminum oxide badge and a real-time radiation dosimeter badge. Secondary endpoints included the radiation dose to the secondary operator and nurse anesthetist, and dose-area product (DAP).

Results: Of the 90 patients, 60 (67%) underwent simple and 30 (33%) underwent complex CEID procedures. For the primary operator, the mean radiation dose at the thyroid position per case was 63% lower in the CR arm (standard badge: 56 vs. 23 μSv). For the second operator, the thyroid dose was also lower in the CR arm (9 vs. 2 μSv, 81% reduction). The cumulative radiation dose for the nurse anesthetist was too low to report meaningful data. The median DAP was 68% lower in the CR arm (622 vs 196 μGy.m2). Using the real-time radiation dosimeter badge, relative reduction in radiation dose for the primary operator was similar in simple (57%) and complex (60%) procedures (Figure 1). The mean procedure times were similar in CR vs. noCR (71 vs 66 mins, p = 0.6). There was no difference in complications between study arms (p = 0.19).

CI-523-04

CARDIAC RESYNCHRONIZATION THERAPY USING THE SYNCAV ALGORITHM COMPARED TO CONVENTIONAL BIV PACING: PRELIMINARY RESULTS OF THE DOUBLE-BLIND, RANDOMIZED, MULTICENTER CLINICAL TRIAL “CRUSTY-TRIAL”

Jaume Francisco Pascual MD; Nuria Rivas-Gandara MD, PhD; Raquel Adelino; Aurelio Quesada MD, PhD; Inigo Sainz Godoy PhD; Pilar Cabanas; Emirce M. Trucco; Jordi Perez-Rodron; Begona Benito MD, PhD; Jose Ferrando; Victor Exposito MD, PhD; Juan Fernandez-Armenta MD; Alba Santos-Ortega and Ignacio Ferreira-Gonzalez; CRUSTY trial investigators

Background: Some of the devices for cardiac resynchronization therapy (CRT) have automatic algorithms to achieve ventricular fusion, such as the SyncAV™ algorithm (Abbott). There are few data on the possible clinical benefit of its use in clinical practice.

Objective: To assess whether cardiac resynchronization using the SyncAV™ algorithm achieves greater electrical resynchronization compared to a conventional biventricular pacing (CVP).

Methods: The CRUSTY trial is a multicenter, randomized, double-blind clinical trial to evaluate the superiority of CRT with fusion using the SyncAV™ algorithm over CVP (with optimization of AV and VV intervals) with a 6-month follow-up. (ClinicalTrials.gov Identifier: NCT03961399). This sub-study focuses on the data obtained at the inclusion and baseline visit to assess the acute electrical response.

Results: From January 2019 to April 2021, 54 patients were included in the 15 participating centers (mean age 66 ± 9 years, 40% women). After 1:1 randomization (Figure 1A), no significant differences were observed in their baseline characteristics (TABLE). After resynchronization, the duration of paced QRS in SyncAV group was lower (137 ± 4 ms VS 118 ± 17 ms, p < 0.01), as well as the absolute (deltaQRS) and relative (% deltaQRS) reduction of the QRS (29 ± 23 ms VS 52 ± 19 ms, p < 0.01; 17% vs 30%, p < 0.01 respectively) (FIGURE). The number of “super-resynchronizers” (QRS < 120ms) was higher in the SyncAV group (19% vs 63%, p < 0.01). In the multivariate analysis, the use of the SyncAV™ algorithm was the only factor that predicted a “super-resynchronizer” response type (OR 7.8; 95% CI 2-26)

Conclusion: Fusion CRT using the SyncAV™ algorithm achieves greater electrical resynchronization compared to EBC in the short term. We remain awaiting the results of the follow-up
that allow us to evaluate the clinical benefit of this marked electrical improvement.

ABSTRACT CE-521:
Understanding and manipulating the autonomic nervous system
Friday, April 29, 2022
10:30 AM - 11:30 AM

CE-521-01

STELLATE GANGLION INSTRUMENTATION FOR RECORDING AND STIMULATION IN PATIENTS WITH VENTRICULAR ARRHYTHMIAS. PRELIMINARY EXPERIENCE
Adi Lador MD; Sufen Wang PhD; Amish S. Dave MD, PhD and Miguel Valderrabano MD

Background: Stellate Ganglion (SG) blockade is used for controlling ventricular arrhythmias (VA). In animal models, SG instrumentation with electrode catheters can allow stimulation and recording cardiac sympathetic activity. Studies on direct modulation and recording of the sympathetic nervous system in human are lacking.

Objective: To assess the feasibility of SG stimulation (SGS) and recording in humans undergoing VA ablation

Methods: Patients (n=11) undergoing ablation procedures for VAs underwent bilateral SG recording and stimulation. Under ultrasound guidance, a 2F octapolar catheter was advanced in the SG at the C7 level. Signals were recorded at 30 kHz and filtered at 0.5-2kHz bandpass. Nerve activities were defined as a 3-fold increase in the amplitude over baseline. Stimulation was performed up to 80 mA output (50 Hz, 2 ms pulse width) for 20-30 s.

Results: Eleven patients (age 63 ± 12.7 years; 82.7% men) with ischemic ventricular tachycardia (VT) (4, 36%), nonischemic VT (5, 45%), and PVCs (2, 18.2%) were included. Stimulation catheter placement was successful without complications in all patients. SGS caused significant increase in the systolic blood pressure (Fig A-B). More after right than left SGS. SGS induced PVCs in 2 patients and VF in 1. We were able to record SG firings preceding VF in a patient with primary VF in the context of ischemic cardiomyopathy (Fig C-E), and left SG firing preceding the arrhythmia after SD stimulation (Fig F-G) in a patient with PVCs induced VF.

Conclusion: SG recording and stimulation are feasible in humans. SGS leads to blood pressure increases, more pronounced after right SGS. SG firing can precede VA onset in humans. Technical refinements are needed to improve reliability of SG recordings.

CE-521-02

REPRODUCIBILITY OF CARDIAC GANGLIONATED PLEXUS LOCALISATION USING A NOVEL CURRENT-CONTROLLED HIGH FREQUENCY STIMULATOR
Clare Coyle BA, BCH, BM; Simos Koutsoftidis MEng; Min-young Kim MBChB, PhD; Bradley Porter MBChB PhD; Daniel Keene MBChB, MSc, PhD; Vishal Luther MBBS; Zhen Lin; Elaine Lim RDQS, CEPS; Aaron Sreenivasan BS, CCDS; Louisa Malcolm-Lawes BS, MBChB, PhD, CEPS-A; Michael Koa-Wing BS, MBBS, PhD, CCDS; Phang Boon Lim BCH, MB, MBChB; Zachary I. Whinnett BMBS, PhD; Fu Siong Ng MBBS, PhD; Norman A. Qureshi BChir, MA, MB, PhD; Nicholas S. Peters FHRS; Nick F. Linton MBBS, MSE, PhD and Prapa Kanagaratnam MD, PhD

Background: Ganglionated plexuses (GPs) are epicardial structures, implicated in arrhythmogenesis, that can be located by triggering their physiological effect via endocardial high frequency stimulation (HFS). Mapping and ablation of GP sites may be an effective treatment for AF. Further research is hampered by regulatory and clinical issues relating to commonly used stimulators. A novel current-controlled stimulator was developed to overcome some of these.

Objective: To assess efficacy and reproducibility of localising atrial GP using a novel current-controlled HFS (Tau-20) in comparison to the Grass S88 with SIU5 (voltage-controlled).