Methods: We identified all loop recorders implanted from December 2020 to November 2021. We then filtered the patients by sex and obtained the site of implant and resulting R-wave.

Results: Of a total of 118 ILR implants, 4/70 were identified as women with breast implants. 1/4 patients received an ILR in the parasternal position (A) at the 4th intercostal space resulting in a sensed R-wave of 0.4mV. The remaining patients underwent mapping of surface EGMs to guide ILR placement in the horizontal ILR position (B) resulting in an average R-wave from 0.28mV. There were no acute complications reported, however R waves in the 0.2-0.48 mV range were substantially lower than average R waves in the non breast implant population (0.5mV).

Conclusion: Mapping of surface electrograms during ILR procedures in patients with breast implants may provide a safe way to prevent complications and obtain adequate electrograms. Uniform strategies to optimize ILR implantation in patients with breast implants remain a work in progress.

PO-644-08

VIRTUAL ATRIAL FIBRILLATION PATIENT EDUCATION LED BY ALLIED PROFESSIONALS IS PREFERRED BY PATIENTS AND LEADS TO HIGH PARTICIPATION RATES AND IMPROVED VIRTUAL CARE ACCEPTANCE

Julie B. Shea ANP-BC, FHRS, CCDS; William H. Bauer MD, FHRs, CCDS; Katherine Bauer; Esseim Sharmar MD; David Chang MD; Uyanga Batnyam MD; Sunil Kapur MD; Thomas M. Tadros MD, MPH; Usha B. Tadros MD, MS, FHRs; Paul C. Zei MD, PhD, FHRs; Gregory Plazza MD; John Fanikos BS, MBA, RPh; Jorge Romero MD, FHRs; Elliott Antman and Bruce A. Koplan MD, MPH, FHRs

Background: Patient education programs are an integral component of care and there is an emerging role for virtual programs led by Allied Professionals to accommodate social distancing restrictions.

Objective: To assess the utilization, acceptance, and benefits of virtual learning for atrial fibrillation patients as well as its impact on virtual care.

Methods: A comprehensive 3-hour virtual symposium on Atrial Fibrillation (AF) via an online video platform was offered to patients and their family members. The program was sponsored by an academic teaching hospital free to patients and was promoted through social media. A total of 314 participants registered and 199 (63%) of registrants participated.

Results: A sample of results from a follow-up survey is shown (Figure 1 and 2). Most respondents were 65 years old (42.4%); Female (71.2%), Caucasian (79.6%), completed graduate school (44.8%) and lived 50+ miles away (61%). Minority populations were under-represented relative to the local population demographics (Black 5%, Hispanic 1.7%). Compared to our prior in person Atrial Fibrillation patient symposium programs, the cost was significantly less - $55/patient for in-person vs. $20/patient for virtual. The majority of respondents (54.5%) indicated that program participation increased the likelihood of participating in a virtual visit.

Conclusion: Virtual learning for Atrial Fibrillation can be successfully offered, with a high enrollment rate and participation at a fraction of the cost of an in-person program. Attendees preferred virtual over in person education. This program influences future acceptance of virtual care. Inclusion of at-risk populations may address potential health inequity and requires further study.

PO-645-01

SUBTHRESHOLD DELAYED AFTERDEPOLARIZATIONS MEDIATED BY REDUCED TISSUE COUPLING PROVIDE AN IMPORTANT SUBSTRATE FOR UNIDIRECTIONAL BLOCK AND ARRHYTHMOGENESIS IN THE INFARCT BORDER ZONE

Fernando Otaviano Campos PhD; Yohannes C. Shiferaw PhD; John Whitaker BCH, BM, PhD; Mark D. O’Neill MBChB, FHRs; Reza Razavi MD; Gernot Plank PhD and Martin J. Bishop PhD

Background: Delayed afterdepolarizations (DADs) caused by spontaneous calcium release (SCR) events have been implicated in arrhythmia formation in the border zone (BZ) of infarcted hearts. DADs may inactivate sodium channels forming a substrate for unidirectional conduction block. The role played by infarct anatomy and altered intracellular coupling in facilitating this phenomenon is not well understood.

Objective: To use computational modelling to investigate the role of anatomical properties of the infarct BZ in creating a substrate for DAD-mediated arrhythmias.

Methods: Detailed post-infarct MRI-derived ventricular porcine data was used to build a computational model. A phenomenological model was used to simulate SCRs in the BZ. Arrhythmia susceptibility was quantified by pacing the model followed by a pause, to see whether DADs would occur, and an extra S2 beat with different coupling intervals (CIs). Tissue