CI-524-02

ASSOCIATION BETWEEN DEVICE-DETECTED SLEEP APNEA AND IMPLANTABLE DEFIBRILLATOR THERAPY IN PATIENTS WITH HEART FAILURE

Andrea Mazza MD; Maria Grazia Bendini MD; Valter Bianchi MD; Cristina Espotido MD; Leonardo Calò MD; Chiara Andreoli MD; Vincenzo Ezio Santobuono MD; Antonio Dello Russo MD, PhD; Marcello Brignoli MD; Domenico Pecora MD; Claudia Baiocchi MD; Giovanna Giubilato MD, MHS; Antonio Rapacciuolo MD, PhD; Sergio Valsecchi and Giuseppe Boriani MD, PhD

Background: Sleep-disordered breathing is highly prevalent in heart failure (HF) and it has been suggested as a risk factor for malignant ventricular arrhythmias. The Respiratory Disturbance Index (RDI) algorithm computed by select implantable cardioverter defibrillators (ICDs) can identify severe sleep apnea (SA).

Objective: In the present analysis we evaluated the association between ICD-detected SA and the incidence of appropriate ICD therapy in patients with HF.

Methods: We enrolled 411 HF patients (age 69 ±10 years, 77% male, ejection fraction 32 ±8%), implanted with an ICD endowed with an algorithm (ApneaScan, Boston Scientific) that calculates the RDI at each night. In this analysis the weekly mean RDI value was considered. The endpoint was the first appropriate ICD therapy. The overall median of the weekly RDI was 33 episodes/h [25th-75th percentile: 24-45]. Using a time-dependent Cox regression model, the continuously measured weekly mean RDI ≥45 episodes/h was independently associated with shock occurrence (HR:4.63, 95%CI:2.54-8.43, p<0.001), after correction for baseline confounders (age, secondary prevention).

Conclusion: In HF patients, patients were more likely to receive appropriate ICD shocks during periods of time when they exhibited more sleep-disordered breathing.

CI-524-03

INAPPROPRIATELY DELAYED THERAPIES FOR VENTRICULAR ARRHYTHMIAS IN BIOTRONIK IMPLANTABLE CARDIOVERTER DEFIBRILLATORS

Adam Oesterle MD; Sanket Dhruva; Cara N. Pellegrini MD, FHRS and L. Bing Liem DO, FHRS, CCDS

Background: Implantable cardioverter defibrillators (ICD) are typically programmed with multiple treatment zones and discriminators to minimize inappropriate therapies for supraventricular tachycardia while still delivering life saving therapies for ventricular tachycardia (VT) and fibrillation (VF). Biotronik ICDs freeze the VT counters when tachycardia is in the VF zone due to lack of discriminators in the VF zone, which may result in an inappropriate delay in tachycardia detection.

Objective: To assess the incidence of inappropriately delayed therapies for ventricular arrhythmias in Biotronik ICDs.

Methods: Patients with Biotronik ICDs were identified from four Veterans Affairs facilities. Patient information and device tracings for patients with transmission for any (i.e. appropriate or inappropriate) ICD therapies were examined to assess for delayed tachycardia detection.

Results: Among 52 veteran patients with Biotronik ICDs, 7 (13%) experienced ICD therapy. Four patients had ICD therapy for ventricular arrhythmias, two of whom experienced an inappropriate delay in detection within the VF zone due to lack of discriminators in the VF zone, which may result in an inappropriate delay in tachycardia detection. One ICD was an Acticor 7 HF-T QP cardiac resynchronization therapy ICD with a VT treatment zone at 188 beats per minute (bpm) and VF treatment zone at 240 bpm. The delay in tachycardia detection due to suspension of the VT counters during VF was 10 seconds with an overall VF time of 31 seconds before ICD shock (figure). The other was an Intica 7 VR-T DX with a VDD right ventricular (RV) lead (RV lead with atrial sensing) with a VT treatment zone at 171 bpm and VF treatment zone of 214 bpm with a tachycardia detection delay of 1.6 seconds due to oscillation between the VT and VF treatment zones.

Conclusion: Because contemporary Biotronik ICDs freeze the VT counters when tachycardia is in the VF zone, ICD therapies can be inappropriately delayed when the tachycardia oscillates between the VT and VF zone. Programming short detection intervals in the VT zone may be necessary to avoid a significant delay in life-threatening ventricular arrhythmia detection and therapy.

Figure: Inappropriately delayed therapies due to inopportune tachycardia oscillation between the ventricular tachycardia and ventricular fibrillation treatment zones with freezing of the ventricular tachycardia counter in a Biotronik Defibrillator. The ventricular tachycardia detection is set at 30 beats and the ventricular fibrillation detection is 250. Demonstrates where tachycardias would have been detected if the ventricular tachycardia counters were not frozen when the tachycardia oscillates between the ventricular fibrillation zone. + Denotes undersensing that results in inappropriate or delayed tachycardia detection. × Ventricular fibrillation is detected. ∙ Shock is delivered.