combined with colchicine in 4 cases, with no recurrent episodes. 13 patients required a permanent pacemaker for persistent conduction defect (52%) and one died of ventricular fibrillation without pacemaker

Conclusion: Advanced AVB could be a complication of COVID-19. The conduction disturbance was reversed by corticosteroids with or without colchicine in eleven of twenty five cases (44%). The resolution with corticosteroids of the advanced AVB in these patients could reflect the transient nature of the viral infection and the inflammatory response associated with it in some patients. 13 patients required a pacemaker (52%). Physicians should be aware of this complication.

CE-541-02

POST-COVID AND POSTURAL ORTHOSTATIC TACHYCARDIA SYNDROME

Justin Haloot DO; Mahmoud Kabbani; Monica Verduzco-Gutierrez; Ratna Bhavaraju-Sanka and Jayasree Pillarisetti MD, FHRS

Background: Persistence of symptoms beyond acute coronavirus disease 2019 (COVID-19) is termed post-acute sequelae of SARS-CoV-2 (PASC) and include neurological, pulmonary, cardiac, psychiatric, and functional impairment. Most common cardiac sequelae appear to be postural orthostatic tachycardia syndrome (POTS). The incidence, presentation and long-term outcomes of POTS as a post-COVID condition is unknown.

Objective: To study the presentation, management, and outcome of Post-COVID POTS.

Methods: We conducted a retrospective study of all patients who were diagnosed with POTS at Cardiology, Neurology, and Rehabilitation Post-COVID clinic after COVID-19 infection between March 1, 2020, and November 1, 2021, at the University of Texas Health San Antonio. We examined COVID history, POTS diagnosis, management, and outcomes of Post-COVID POTS patients.

Results: The cohort comprised of 40 patients who were diagnosed with Post-COVID POTS. Mean age was 40.98 ± 11 years with a mean BMI of 32.32 ± 9.70. Females comprised of 97.5% of the patients. Symptoms began 4-6 weeks after COVID and included fatigue (75%), palpitations (70%), lightheadedness (47.5%), cognitive decline (50%), mental clouding (50%), dyspnea (50%), memory loss (47.5%), and syncope (2.5%). Patients were diagnosed with Post-COVID POTS an average of 219.9 ± 156.4 days after the diagnosis of COVID-19. Tachycardia upon standing or activity occurred with a mean change in heart rate of 42.48 ± 29.37 bpm. Along with increasing water intake, salt intake, rehabilitation, and lower body compression, initial management included beta blockers (30%), fludrocortisone (5%), and midodrine (5%). At 6 months, patients still had persistent symptoms with 65.52% of patients noting some improvement, 31.0% with stable symptoms, and 3.45% with worsening symptoms. Physical therapy and rehabilitation were reported as the most effective treatment in the mild improvement group. At 6 months disabling symptoms persisted in 100% of these high functioning women pre-COVID. No patient had full recovery.

Conclusion: Post-COVID POTS is a disabling diagnosis and symptoms persisted even after 6 months of onset. Although physical therapy and rehabilitation seem to have some effect, these patients who were functional pre-COVID are still disabled and none had full recovery.

CE-541-03

OCCURRENCE OF ATRIAL FIBRILLATION AFTER RECEIVING A SARS-COV-2 VACCINE: REPORT FROM CENTERS FOR DISEASE CONTROL AND PREVENTION VAERS DATABASE

Abhishek Maan MD, ScM; Daniel Musikanow MD; Brandon S. Needelman MD; Joshua Lampert MD; Emmanuel Ekanem MD; Jonathan Gandhi MD; Mohit K. Turagam MD; William Whang MD; Srinivas R. Dukkipati MD and Vivek Y. Reddy MD

Background: The COVID-19 pandemic continues to be an ongoing health crisis affecting over 49 million patients in the US. Currently, 3 vaccines have been authorized for use by the US FDA for preventing COVID-19 infection. Although data are accumulating on rare reports of myocarditis, there is little data on atrial fibrillation (AF) after COVID-19 vaccination. In the initial randomized clinical trial of the Moderna vaccine, the incidence of AF was reported to be ~0.1%, and balanced between the vaccine and placebo groups; but the cohort was relatively young (75% were < 65 years old).

Objective: We sought to assess the associated risk of AF with COVID-19 vaccination.

Methods: We analyzed data from Vaccine Adverse Event Reporting System (VAERS) database, which had categorized self-reported occurrence of AF along with major complications.

Results: Of the total 14,693 individuals who had received at least 1 dose of COVID-19 vaccine and had also reported at least 1 adverse event in VAERS, 23 (0.16%) participants had reported the occurrence of new-onset AF. Of these 23 individuals (mean age = 76.6 ± 15.7 years; M/F = 14 [61%] / 9 [39%]), 10 (43.5%) had received the Moderna vaccine (mRNA-1273) and 13 (56.5%) had received the Pfizer-BioNTech vaccine. The timing of AF onset after the administration of vaccine dose ranged from 3 hours to 14 days. In 15 of the 23 patients, new-onset AF was the primary reason necessitating emergency room visit. Of these 23 individuals, one had a stroke, and another had a transient ischemic attack.

Conclusion: The temporal association of AF with COVID-19 vaccine administration suggest that there may indeed be a transient increase in AF post-vaccination, albeit at a seemingly low rate. This might reflect a transiently elevated proinflammatory state in conjunction with presence of an underlying electrical and structural substrate. The apparent infrequent nature of development of AF suggests that the vaccine should not be withheld because of concern about developing AF. On the other hand, it seems prudent to i) treat post-vaccine AF conservatively as a potentially reversible event (unless the AF persists late [> 1 month] after vaccination), and ii) inform patients with a history of AF that the hyper-inflammatory state associated with COVID-19 vaccination (as can occur with any vaccine) might transiently trigger AF.

CE-541-04

CARDIAC ARRHYTHMIAS IN POST-ACUTE SEQUELAE OF SARS-COV-2 INFECTION ASSESSED BY AMBULATORY RHYTHM MONITORING

Christopher Hill BA; Shrey Swaminathan BS; Danny Li; Michael J. Peluso MD; Timothy J. Henrich MD; Jeffrey N. Martin MD, MPH; Steven G. Deeks MD; Priscilla Y. Hsue MD and Matthew S. Durstenfeld MD
Background: Many COVID-19 survivors report ongoing cardiopulmonary symptoms and organ dysfunction in a poorly understood syndrome known as post-acute sequelae of COVID-19 (PASC). Risk of arrhythmias is elevated in acute COVID-19 infection, especially in hospitalized patients with severe infection. In the post-acute period, palpitations are commonly reported, but little is known about the risk of arrhythmias in patients with PASC.

Objective: To characterize the burden of arrhythmias in individuals with PASC at least 1 year after SARS-CoV-2 infection and the correlation between symptoms and clinically significant arrhythmias.

Methods: As part of the LIINC COVID-19 recovery cohort (NCT04362150), we conducted ambulatory rhythm monitoring using the Bardy Diagnostics Carnation Ambulatory Monitor (CAM) for up to 14 days on participants at least 1 year after PCR-confirmed COVID-19 infection without prior CVD. Cardiopulmonary symptoms were assessed through interviews at the time of enrollment, at the time of initiation of rhythm monitoring, and through a journal used during the rhythm monitoring period.

Results: Among 27 participants, 13 reported cardiopulmonary symptoms. Median age was 56 and 48% were female (Table 1); monitoring was performed at a median of 16.5 months after infection. Those with PASC pushed the symptom button 4.2 more times on average (95% CI -1.4 to 10.3; p = 0.13). After adjustment for age and sex, cardiopulmonary symptoms were not associated with an increased burden of PACs ($\beta = -0.04$, 95%CI -0.15 to 0.07, $p = 0.47$), PVCs ($\beta = 0.21$, 95%CI -0.22 to 0.65, $p = 0.31$), or supraventricular tachycardia episodes ($\beta = 3.0$ per week, 95%CI -3.1 to 9.2, $p = 0.31$). Average HR ($\beta = -1.66$, 95%CI -12.8 to 9.5, $p = 0.076$) and HR variability ($\beta = 2.5$, 95%CI -10.3 to 15.3, $p = 0.69$) were not significantly different between those with and without symptoms. Similar results were found after adjusting for LVEF, LV strain, and LA volume index. Button pushes correlated with SVT in only one participant who had PASC and none without PASC.

Conclusion: In the first study to assess cardiac arrhythmia burden in patients with PASC through ambulatory rhythm monitoring, we did not find significant associations between the presence of cardiopulmonary symptoms after COVID-19 and PAC burden, PVC burden, SVT episodes, average HR, or HR variability.

ABSTRACT PC-577: Complex Cases for the Ablationist

Saturday, April 30, 2022
1:00 PM - 2:00 PM

FASCICULAR ECTOPY FROM THE RIGHT CORONARY SINUS OF VALSALVA

John A. Anderson DO and Amit Noheria MBBS, SM

Background: Fascicular ectopic complexes (FEC) can cause symptoms and pseudo atrio-ventricular block (AVB). Ablation is a viable option but carries a risk of AVB. Successful far-field ablation of left anterior fascicular beats from right aortic sinus of Valsalva (RASoV) has been reported.

Objective: We present a case of FEC with earliest HPS signal and successful ablation from the RASoV.

Methods: N/A

Results: A 60-year-old woman had palpitations and blocked P waves. ECG revealed frequent FEC and occasional blocked P waves (fig. 1a). We postulated this to be due to concealed FEC (pseudo AVB). She failed flecainide and presented for ablation. A decapolar catheter was placed across the right His-Purkinje system (HPS). She had frequent FECs with early activation of the HPS. We observed FECs with complete antegrade block within the HPS but retrograde penetration into the atrium proving this as the mechanism for pseudo AVB (fig. 1b). Activation mapping of the right and left (retroaortic) HPS was performed with the earliest HPS potential on the decapolar catheter as the fiducial reference. Activation progressed retrograde to the proximal His and antegrade to the RBB, both being later than the distal His. Similarly, the left bundle branch and both fascicles were late. Mapping in the RASoV identified a His-like signal in sinus rhythm that was the earliest site in FEC, 7 ms ahead of reference (fig 1c & d). Focal radiofrequency ablation immediately abolished FECs. Monitoring overnight revealed no further FECs or blocked P waves, and patient reported relief of symptoms.

Conclusion: Mapping of FEC should include the RASoV. The anatomic basis for such fascicular potential in the RASoV may be the dead-end tract of the conduction axis reported by Kurosawa and Becker.