characteristics were collected including procedure time, fluoroscopy use and electrical parameters.

Results: A total of 72 CSP implants were performed with a variety of pacing configurations including HBP (35), His optimised-CRT (2), LBP (34) and left bundle optimised-CRT (1). Implants were a mixture of de-novo implants (67) and device upgrades (5). During the study period there was a transition from HBP to LBP (Figure 1). Back-up leads were placed in 29% (10) of HBP systems, none were required in LBP systems. R-waves were larger (12.3 vs 3.2mV, \(p<0.01 \)) and capture thresholds lower (0.68 @ 0.4/0.5ms vs 1.32 @1ms, \(p<0.01 \)) with LBP. Intrinsic QRS duration was similar between the two groups (135 vs 120ms, \(p=0.3 \)). LBP resulted in a significant shortening of QRS duration (135 vs 111ms, \(p<0.01 \)) and HBP resulted in a non-significant shortening of QRS duration (130 vs 118ms, \(p=0.22 \)) (Figure 2). Procedure times were shorter for LBP compared to HBP (88 vs 106min, \(p=0.03 \)). The only complication was 1 haematoma not requiring intervention following a HBP implant; there were no lead dislodgements.

Conclusion: Our early experience of CSP shows that the implant procedure is shorter and electrical parameters better with LBP compared to HBP. There was a switch from HBP to LBP over the period studied. Both are viable, safe techniques in a centre establishing a CSP program.

Figure 1. Trend in HBP and LBP over the study period.

Figure 2. Change in QRS duration with His bundle pacing and left bundle branch pacing compared to intrinsic QRS duration (black dashed line represents the mean values).

PO-614-08

SODIUM CHANNEL Na\(_{v}\)1.6 AND NA-CA EXCHANGER REMODELING CONTRIBUTES TO ARRHYTHMOGENIC LATE SODIUM CURRENT AND Ca\(_{2+}\) SPARKS IN THE PRESENCE OF D96V MUTANT CALMODULIN

Heather Struckman; Mikhail Tarasov; Yusuf Olgr; Sandor Gyorky PhD; Rengasayee Veeraraghavan PhD and Przemyslaw Radwanski PharmD, PhD

Background: Calmodulin (CaM) facilitates sodium channel (Na\(_{v}\)) inactivation, thereby preventing proarrhythmic late sodium current (I\(_{Na}\)). To date, a link between arrhythmogenic mutations in CaM and Na\(_{v}\) dysfunction is not well established. Outside of Na\(_{v}\)1.5, dysfunctional inactivation of Nav1.6 promotes late I\(_{Na}*)-mediated arrhythmias.

Objective: Investigate Nav1.6 dysregulation by arrhythmogenic calmodulin (CaM) mutant D96V.

Methods: Nav1.6-expressing CHO cells, transgenic mice, super-resolution microscopy (sub-diffraction confocal imaging [sDCI], STED, STORM), scanning ion conductance microscopy (SICM)-guided “smart” patch clamp.

Results: STED revealed enlarged Na\(_{v}\)1.6 clusters in CHO cells transfected with D96V-CaM compared to WT-CaM. In transgenic mice with cardiac-specific D96V-CaM expression (cD96V), sDCI revealed D96V-CaM distributed in a striated pattern (consistent with T-tubular localization) along with ryanodine receptor (RyR2). Na\(_{v}\)1.6 clustering was quantified with STORM: In both WT and cD96V hearts, \(\approx 50\% \) of Na\(_{v}\)1.6 clusters localized \(<100\text{nm} \) from RyR2. Intriguingly, Na\(_{v}\)1.6 density within these regions increased 67\% in D96V relative to WT. The functional consequences of this structural Na\(_{v}\)1.6 remodeling was assessed with SICM-guided “smart” patch allowing for the recording of Na\(_{v}\) activity localized at T-tubule openings. D96V myocytes displayed increased cluster size and frequency of late Na\(_{v}\)1.6 burst openings. Previous studies have implicated such aberrant late Na\(_{v}\) activity in proarrhythmic Ca\(_{2+}\) mishandling. To assess the potential for such, we investigated sodium-calcium exchanger (NCX) localization near Na\(_{v}\)1.6. STORM revealed that 77\% of Nav1.6 clusters localized \(<100\text{nm} \) from NCX in WT compared to 89\% in D96V hearts. Nav1.6 density within these regions increased 48\% in D96V relative to WT. Interestingly, NCX cluster density was preferentially increased near Nav1.6 in D96V hearts. In functional imaging studies, D96V myocytes displayed larger, more frequent Ca\(_{2+}\) sparks relative to WT which was reversed by cardiac-specific Na\(_{v}\)1.6 knockout.

Conclusion: To our knowledge, this is the first report of proarrhythmic cardiac structural remodeling secondary to a CaM defect, providing mechanistic insight into calmodulinopathy.

POSTER PO-615:

Featured Posters: Allied Professionals and Basic Science at Pod 2

Friday, April 29, 2022
12:30 PM - 2:30 PM

PO-615-01

ROLE OF KCNQ1 REGULATION IN VARIABILITY IN ACTION POTENTIAL PROLONGATION BY IKR BLOCK

Yuko Wada MD, PhD; Lili Wang PhD; Lynn D. Hall; Laura L. Short; Ashli E. Chew MS; Joseph F. Solus PhD and Dan M. Roden MD, FHRS

S106 Heart Rhythm, Vol 19, No 5, May Supplement 2022