Conclusion: Our modeling work suggests that modifications to the S-ICD coil design could lead to marked reductions in DFT. This could allow for the creation of S-ICDs with lower energy requirements and correspondingly smaller generators compared to current devices and might obviate the need for VF conversion testing with S-ICDs.

PO-618-04

LONGEVITY OF MODEL-3501 SUBCUTANEOUS IMPLANTABLE DEFIBRILLATOR LEAD IN CLINICAL PRACTICE

STEFANO VIANI MD; Luca Segreti MD; Luca Ottaviano MD; Mauro Biffi MD; Gerardo Nigro MD; Giuseppe Ricciardi MD; Pietro Francia MD; Antonio D’Onofrio MD; Giovanni Bisignani MD; Antonio Dello Russo MD; PAOLO DE FILIPPO MD; Francesco Solimene MD; Antonio Scalone MD and Federico Migliore MD

Background: In December 2020, the subcutaneous implantable cardioverter-defibrillator (S-ICD) lead model-3501 was subject to a safety notification because of increased risk of fracture at a location just distal to the proximal sense ring. The manufacturer’s product performance report currently reports a lead survival probability of 98.8% at 45 months. However, no multicenter long-term performance information exists for this lead.

Objective: To assess the longevity of model-3501 leads and to compare it with that of the previous model-3401.

Methods: This analysis included consecutive patients who received an S-ICD with a model-3501 or a model-3401 lead at 66 Italian centers of the Rhythm Detect registry. A lead failed if it required extraction/replacement because of abnormalities suggestive of a structural defect, e.g. out-of-range impedance, nonphysiological electrical noise or ineffective therapy.

Results: From January 2013 to July 2021, 2,403 patients were implanted and followed up (78% male, age 49±15 years). A 3501-model lead was used in 1,697 patients and a 3401-model in 706 patients. During a median follow-up of 38 months (25th-75th percentile: 24-55), we detected 4 malfunctioning model-3501 leads and 2 model-3401 leads. After analysis of the returned leads by the manufacturer’s technical services, a single model-3501 lead failure was a fracture distal to the proximal sense ring. The manufacturer’s product performance report currently reports a lead survival probability of 98.8% at 45 months. However, no multicenter long-term performance information exists for this lead.

Conclusion: To assess the longevity of model-3501 leads and to compare it with that of the previous model-3401.

PO-618-05

DEEP LEARNING ALGORITHMS FOR SCREENING OF LEAD NOISE IN ELECTROCARDDIOGRAMS TRANSMITTED BY CARDIAC IMPLANTABLE ELECTRONIC DEVICES

Marc Strik MD, PhD; Sylvain Ploux MD, PhD; Pierre BORDACHAR MD, PhD and Remi Dubois PhD

Background: Electrograms (EGM) remotely transmitted by cardiac implantable electronic devices (CIEDs) may show signs of lead noise.

Objective: We tested different deep neural architectures for detection of noise amongst episodes labeled as non-sustained ventricular tachycardia (NSVT).

Methods: A total of 10,471 NSVT episodes from 805 patients implanted with a Boston Scientific CIED were used, each composed of a right ventricular near-field signal and possibly a right atrial and/or a far field signal, depending on the device model. The highly unbalanced dataset (6% of positive events corresponding to noise versus 94% of NSVT) was divided into 3 datasets: training (4,998 episodes), validation (2,621 episodes), and test (2,843 episodes). Five deep learning approaches, including state-of-the-art architectures based on convolutional neural networks (CNN) and ResNet, were trained and optimized to tested. Results were evaluated using a clinically relevant F2 score, prioritizing noise detection over precision.

Results: A CNN-based network (2DTF-CNN) that used 2D time/frequency (TF) maps of the ventricular bipolar signal as input gave the best results on the test set (F2 = 0.914), outperforming a ResNet pre-trained with electrocardiogram data and with transfer learning (2DTF-ResNet) (F2 = 0.863). However, a CNN network based on a naive ResNet architecture trained on 2D images of the ventricular signal time traces (2D-ResNet) also performed very well (F2 = 0.906).

Conclusion: Artificial intelligence can adequately detect lead noise, optimizing remote monitoring and decreasing work burden.

PO-618-06

REMOTE PROGRAMMING OF CARDIAC IMPLANTABLE ELECTRONIC DEVICES: MULTI-CENTRIC EVALUATION OF A CUSTOM MULTIVENDOR SOLUTION

Sylvain Ploux MD, PhD; Marc Strik MD, PhD; Fabrice Demoniere; Dominique Rakotoarimanana MD; Hugo-Pierre Racine MD; Michel Haissaguerre MD, PhD and Pierre BORDACHAR MD, PhD

Background: Until now, remote programming of cardiac implantable electronic devices (CIEDs) has been ruled out due to technical issues and safety concerns. However remote programming would be of high value particularly in settings of emergency, limited resources, enforced physical distancing, and quarantines.