enrolled and implanted with S-ICDs and followed for up to 18 months in the UNTOUCHED trial (n=1111). IAS rates by implant technique and by sense vector were evaluated and Multivariable modeling was used allowing for interaction terms with incision technique.

Results: Pts implanted using 2IT were more likely to be male (p=0.0131) and have lower BMI (p=0.0016). Overall IAS rates for pts implanted using 2IT were 4.7% vs 2.6% using 3IT. Pts implanted using 2IT were three times as likely to receive IAS due to non-cardiac oversensing (myopotentials, noise, etc; 1.8% vs 0.6%) and more than twice as likely to receive IAS due to t-wave over-sensing (2.0% vs 0.9%). In pts implanted using the 2IT, IAS rate was similar when the sense vector included the distal electrode as compared to patients programmed with the primary vector (distal electrode excluded): 19 pts (2.4%) experiencing 29 episodes vs. 20 pts (2.6%) experiencing 27 episodes respectively (p=1.0). Multivariable modeling results (table) showed the only significant interaction term with 2IT was BMI, leading to less risk of IAS. In contrast, 2IT remained a significant, independent predictor of increased IAS and BMI was also an independent predictor of increased IAS.

Conclusion: In the UNTOUCHED trial, the two-incision technique was found to be an independent predictor of inappropriate shocks. This increase does not appear to be a consequence of an unsecured tip electrode. More analysis is needed to further understand the interaction between the 2IT and BMI on inappropriate shocks.

Methods: A 7Fr conductance catheter (CD Leycom, the Netherlands) was inserted into the RV to record PV loops during speed optimization study in a 78 year old woman with non-ischemic cardiomyopathy post CRT, pacemaker dependent atrial fibrillation, and Heartmate 3 LVAD. Concurrently, pulmonary arterial catheter (PAC) measured intracardiac pressure. Pacing strategies were assessed at low (4800 rpm) and high speed (5400 rpm). RV function was assessed by slope and contour of end-systolic PV relationship (ESPVR) and end-diastolic PV relationship (EDPVR).

Results: At low speed there was no significant change in RV systolic or diastolic function among pacing strategies. At high speed, peak pressure generation declined and ESPVR slope was shallower with LV-only pacing. There was no significant difference in RV function between BiV and RV-only pacing. PAC measured pressure and cardiac output were unchanged with pacing at both speeds.

Conclusion: RV PV analysis identified hemodynamic changes associated with different pacing strategies not evident with traditional assessment of filling pressures. LV-only pacing negatively impacted RV function while RV-only and BiV pacing had similar RV hemodynamics. Further investigation is needed to evaluate this pattern in additional LVAD patients.

PO-633-04

WHAT’S ALL THAT NOISE? A CASE OF DEVICE TO DEVICE INTERFERENCE DURING SECOND MICRA AV IMPLANT NECESSITATING AD HOC OLDER DEVICE EXTRACTION

Francis Thanh Phan MD; Ryle Przybylowicz BS, MD; Uday Gajjandra Sandhu BS, MD; Christopher M. Verdick MD; Ignatius Gerardo E. Zarraga MD, FHRS; Khidir Dalouk MD; Merritt H. Raitt MD, FHRS and Peter M. Jessel MD, FHRS

Background: Implantation of leadless pacemaker devices is becoming more prevalent in patients with relative contraindications to traditional systems. To date, little has been described about the complications that arise when patients require implant of subsequent additional leadless devices.

Objective: To describe device-device interference as a significant limitation to multiple leadless pacemaker implantations.

Methods: N/A

Results: A 62 year old veteran with ESRD on HD via right IJ tunneled catheter, Type 2 DM, mixed cardiomyopathy (LVEF 40-45%) from severe aortic stenosis presented with symptomatic complete heart block with a ventricular escape in the setting of hyperkalemia from a missed dialysis session. He continued to require temporary pacing despite correction of his electrolyte derangements with HD. Due to poor transvenous options, he underwent successful implantation of a leadless pacemaker (Micra AV). He had good sensing (20 mV) and pacing parameters on post op day 1 (0.83v at 0.24ms, 830 ohms). Unfortunately, the patient represented with symptomatic complete heart block 43