antral PV lesions. Clinical course was uneventful, no patient had chest discomfort, coughing or hematemesis. All patients underwent uncomplicated esophagoscopy, without thermal lesions or ulcers. At 30-day follow-up, all patients were asymptomatic.

Conclusion: In a real-world, non-clinical study setting, PVI using PFA for paroxysmal AF is safe for the esophagus.

Figure: Postero-anterior LA view before (left) and after (right) ablation with the esophagus (dark grey) projected over the posterior wall. The right bipolar voltage 3D map shows extensive, non-magenta antral ablation lesions.

POSTER PO-635:
Posters: Catheter Ablation at Pod 7

Friday, April 29, 2022
3:00 PM - 5:00 PM

PO-635-01

REDUCTION OF FAR-FIELD POTENTIALS USING CLOSE-UNIPOLAR ELECTROGRAMS IN A NOVEL ULTRA-HIGH RESOLUTION CATHETER MAPPING SYSTEM: EVALUATION IN A SWINE ATRIAL LINEAR LESION MODEL

Yoshimori An MD; Hiroshi Nakagawa MD, PhD; Shunsuke Kuroda MD; Assaf Govari PhD; Christopher T. Beeckler BS; Vadim Gliner MS; Joe T. Keyes PhD; Kevin J. Herrera BS; Atsushi Ikeda MD, PhD; Shady Nakhla MD; Ayman A. Hussein MD, FHRS; Christopher T. Beeckler BS; Vadim Gliner MS; Joe T. Keyes PhD; Kevin J. Herrera BS; Atsushi Ikeda MD, PhD; Shady Nakhla MD; Ayman A. Hussein MD, FHRS; Oussama M. Wazni MD and Warren M. Jackman MD, FHRS

Background: In complex atrial substrate with multiple atrial potentials, unipolar electrograms (EGM) referenced to the Wilson Central Terminal (WCT) are often timed to the wrong component due to large, steep far-field potentials (FP).

Objective: To evaluate the ability of close-unipolar electrograms (CUE) to reduce FP in a novel ultra-high resolution mapping system (IsoSense, Biosense Webster) using a swine model.

Methods: In 6 swine, linear RF ablation was performed in the RA to create complex patterns of activation. The RA was mapped during atrial pacing using an 8F catheter with deployable mini-basket (18 mm diameter) of 10 splines of 10 electrodes (total 100 outward facing tiny electrodes, 0.5 mm² area, 1.7 mm center-to-center) and a central non-contact electrode for CUE reference (Fig). The system generated chamber geometry and simultaneous activation maps using timing based on either: 1) CUE (between each of the 100 electrodes and the non-contact reference electrode); or 2) 100 conventional unipolar EGMs using the WCT reference (WCT-UE). CUE and WCT-UE maps were compared at sites exhibiting complex EGM.

Results: Fig. Activation maps of the entire RA (median 5,208 mapped points) were obtained in median 6.4 min. CUE significantly reduced far-field atrial and ventricular EGM while enhancing local near-field EGM. CUE provided more accurate timing of EGM based on maximum negative dV/dt at sites with complex atrial EGM. WCT-UE often falsely annotated timing on large FP. CUE activation maps accurately identified the location of lines of block with sharp demarcation in all 6 swine.

Conclusion: The new ultra-high resolution mapping system using CUE significantly reduced FP and improved mapping accuracy in the area of complex atrial EGM.

PO-635-02

FACTORS ASSOCIATED WITH INFUSION NEEDLE RADIOFREQUENCY ABLATION FAILURE IN PATIENTS WITH REFRACTORY VENTRICULAR TACHYCARDIA

Uyanga Batnyam MD; Kenichi Tokutake MD; Amir M. AbdelWahab MBCB, MD, MSc; Travis D. Richardson MD; Arvind N. Kanagasundram MD, FHRS; John L. Sapp MD, FHRS; William G. Stevenson MD, FHRS and Usha B. Tedrow MD, MS, FHRS

Background: We have previously described infusion needle catheter ablation (INCA) using endhole irrigation (Biosense Webster, Inc) for treatment of VT in 31 patients refractory to medications and conventional catheter ablation (CA). While INCA was safe with high procedural success, a significant number of patients had VT recurrence.

Objective: To identify the factors associated with unsuccessful INCA.