Advertisement

High-resolution mapping of reentrant atrial tachycardias: Relevance of low bipolar voltage

  • F. Daniel Ramirez
    Correspondence
    Address reprint requests and correspondence: Dr F. Daniel Ramirez, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin St, H1285-A, Ottawa, Ontario, Canada K1Y 4W7.
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France

    Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada

    School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Marianna Meo
    Affiliations
    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Corentin Dallet
    Affiliations
    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Philipp Krisai
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Konstantinos Vlachos
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Antonio Frontera
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Masateru Takigawa
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Yosuke Nakatani
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Takashi Nakashima
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Clémentine André
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Tsukasa Kamakura
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Takamitsu Takagi
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Aline Carapezzi
    Affiliations
    Boston Scientific, Bordeaux, Aquitaine, France
    Search for articles by this author
  • Romain Tixier
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Rémi Chauvel
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Ghassen Cheniti
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Josselin Duchateau
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Thomas Pambrun
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Frédéric Sacher
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Mélèze Hocini
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Michel Haïssaguerre
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Pierre Jaïs
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Rémi Dubois
    Affiliations
    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
  • Nicolas Derval
    Affiliations
    Department of Electrophysiology and Cardiac Stimulation, Hôpital Cardiologique du Haut Lévêque, CHU Bordeaux, Bordeaux-Pessac, France

    IHU LIRYC (L’Institut de Rythmologie et Modélisation Cardiaque), Bordeaux-Pessac, France
    Search for articles by this author
Published:November 07, 2022DOI:https://doi.org/10.1016/j.hrthm.2022.11.003

      Background

      Bipolar voltage is widely used to characterize the atrial substrate but has been poorly validated, particularly during clinical tachycardias.

      Objective

      The purpose of this study was to evaluate the diagnostic performance of voltage thresholds for identifying regions of slow conduction during reentrant atrial tachycardias (ATs).

      Methods

      Thirty bipolar voltage and activation maps created during reentrant ATs were analyzed to (1) examine the relationship between voltage amplitude and conduction velocity (CV), (2) measure the diagnostic ability of voltage thresholds to predict CV, and (3) identify determinants of AT circuit dimensions. Voltage amplitude was categorized as “normal” (>0.50 mV), “abnormal” (0.05–0.50 mV), or “scar” (<0.05 mV); slow conduction was defined as <30 cm/s.

      Results

      A total of 266,457 corresponding voltage and CV data points were included for analysis. Voltage and CV were moderately correlated (r = 0.407; P < .001). Bipolar voltage predicted regions of slow conduction with an area under the receiver operating characteristic curve of 0.733 (95% confidence interval 0.731–0.735). A threshold of 0.50 mV had 91% sensitivity and 35% specificity for identifying slow conduction, whereas 0.05 mV had 36% sensitivity and 87% specificity, with an optimal voltage threshold of 0.15 mV. Analyses restricted to the AT circuits identified weaker associations between voltage and CV and an optimal voltage threshold of 0.25 mV.

      Conclusion

      Widely used bipolar voltage amplitude thresholds to define “abnormal” and “scar” tissue in the atria are, respectively, sensitive and specific for identifying regions of slow conduction during reentrant ATs. However, overall, the association of voltage with CV is modest. No clinical predictors of AT circuit dimensions were identified.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nattel S.
        • Harada M.
        Atrial remodeling and atrial fibrillation: recent advances and translational perspectives.
        J Am Coll Cardiol. 2014; 63: 2335-2345
        • Shen M.J.
        • Arora R.
        • Jalife J.
        Atrial myopathy.
        JACC Basic Transl Sci. 2019; 4: 640-654
        • Kottkamp H.
        Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy.
        Eur Heart J. 2013; 34: 2731-2738
        • Anter E.
        • Josephson M.E.
        Bipolar voltage amplitude: what does it really mean?.
        Heart Rhythm. 2016; 13: 326-327
        • Sim I.
        • Bishop M.
        • O’Neill M.
        • Williams S.E.
        Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate.
        J Interv Card Electrophysiol. 2019; 56: 213-227
        • Harrison J.L.
        • Jensen H.K.
        • Peel S.A.
        • et al.
        Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study.
        Eur Heart J. 2014; 35: 1486-1495
        • Callans D.J.
        • Ren J.F.
        • Michele J.
        • Marchlinski F.E.
        • Dillon S.M.
        Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction: correlation with intracardiac echocardiography and pathological analysis.
        Circulation. 1999; 100: 1744-1750
        • Blandino A.
        • Bianchi F.
        • Grossi S.
        • et al.
        Left atrial substrate modification targeting low-voltage areas for catheter ablation of atrial fibrillation: a systematic review and meta-analysis.
        Pacing Clin Electrophysiol. 2017; 40: 199-212
        • Bradfield J.S.
        • Huang W.
        • Tung R.
        • et al.
        Tissue voltage discordance during tachycardia versus sinus rhythm: implications for catheter ablation.
        Heart Rhythm. 2013; 10: 800-804
        • Rodriguez-Manero M.
        • Valderrabano M.
        • Baluja A.
        • et al.
        Validating left atrial low voltage areas during atrial fibrillation and atrial flutter using multielectrode automated electroanatomic mapping.
        JACC Clin Electrophysiol. 2018; 4: 1541-1552
        • Miyamoto K.
        • Tsuchiya T.
        • Narita S.
        • et al.
        Bipolar electrogram amplitudes in the left atrium are related to local conduction velocity in patients with atrial fibrillation.
        Europace. 2009; 11: 1597-1605
        • Viles-Gonzalez J.F.
        • Gomes J.A.
        • Miller M.A.
        • et al.
        Areas with complex fractionated atrial electrograms recorded after pulmonary vein isolation represent normal voltage and conduction velocity in sinus rhythm.
        Europace. 2013; 15: 339-346
        • Honarbakhsh S.
        • Schilling R.J.
        • Orini M.
        • et al.
        Left atrial scarring and conduction velocity dynamics: rate dependent conduction slowing predicts sites of localized reentrant atrial tachycardias.
        Int J Cardiol. 2019; 278: 114-119
        • Frontera A.
        • Mahajan R.
        • Dallet C.
        • et al.
        Characterizing localized reentry with high-resolution mapping: evidence for multiple slow conducting isthmuses within the circuit.
        Heart Rhythm. 2019; 16: 679-685
        • Jais P.
        • Matsuo S.
        • Knecht S.
        • et al.
        A deductive mapping strategy for atrial tachycardia following atrial fibrillation ablation: importance of localized reentry.
        J Cardiovasc Electrophysiol. 2009; 20: 480-491
        • Takigawa M.
        • Derval N.
        • Frontera A.
        • et al.
        Revisiting anatomic macroreentrant tachycardia after atrial fibrillation ablation using ultrahigh-resolution mapping: implications for ablation.
        Heart Rhythm. 2018; 15: 326-333
        • Dallet C.
        • Roney C.
        • Martin R.
        • et al.
        Cardiac propagation pattern mapping with vector field for helping tachyarrhythmias diagnosis with clinical tridimensional electro-anatomical mapping tools.
        IEEE Trans Biomed Eng. 2019; 66: 373-382
        • Verma A.
        • Wazni O.M.
        • Marrouche N.F.
        • et al.
        Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure.
        J Am Coll Cardiol. 2005; 45: 285-292
        • Burstein B.
        • Comtois P.
        • Michael G.
        • et al.
        Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure.
        Circ Res. 2009; 105: 1213-1222
        • Gerstenfeld E.P.
        • Marchlinski F.E.
        Mapping and ablation of left atrial tachycardias occurring after atrial fibrillation ablation.
        Heart Rhythm. 2007; 4: S65-S72
        • Derval N.
        • Takigawa M.
        • Frontera A.
        • et al.
        Characterization of complex atrial tachycardia in patients with previous atrial interventions using high-resolution mapping.
        JACC Clin Electrophysiol. 2020; 6: 815-826
        • Kapa S.
        • Desjardins B.
        • Callans D.J.
        • Marchlinski F.E.
        • Dixit S.
        Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation.
        J Cardiovasc Electrophysiol. 2014; 25: 1044-1052
        • Lin Y.
        • Yang B.
        • Garcia F.C.
        • et al.
        Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation.
        J Interv Card Electrophysiol. 2014; 39: 57-67
        • Yagishita A.
        • Sparano D.
        • Cakulev I.
        • et al.
        Identification and electrophysiological characterization of early left atrial structural remodeling as a predictor for atrial fibrillation recurrence after pulmonary vein isolation.
        J Cardiovasc Electrophysiol. 2017; 28: 642-650
        • van Schie M.S.
        • Kharbanda R.K.
        • Houck C.A.
        • et al.
        Identification of low-voltage areas: a unipolar, bipolar, and omnipolar perspective.
        Circ Arrhythm Electrophysiol. 2021; 14: e009912
        • Williams S.E.
        • Linton N.
        • O’Neill L.
        • et al.
        The effect of activation rate on left atrial bipolar voltage in patients with paroxysmal atrial fibrillation.
        J Cardiovasc Electrophysiol. 2017; 28: 1028-1036
        • Frontera A.
        • Takigawa M.
        • Martin R.
        • et al.
        Electrogram signature of specific activation patterns: analysis of atrial tachycardias at high-density endocardial mapping.
        Heart Rhythm. 2018; 15: 28-37
        • Latcu D.G.
        • Bun S.S.
        • Viera F.
        • et al.
        Selection of critical isthmus in scar-related atrial tachycardia using a new automated ultrahigh resolution mapping system.
        Circ Arrhythm Electrophysiol. 2017; 10: e004510
        • Takigawa M.
        • Derval N.
        • Martin C.A.
        • et al.
        Mechanism of recurrence of atrial tachycardia: comparison between first versus redo procedures in a high-resolution mapping system.
        Circ Arrhythm Electrophysiol. 2020; 13: e007273
        • Scherr D.
        • Khairy P.
        • Miyazaki S.
        • et al.
        Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint.
        Circ Arrhythm Electrophysiol. 2015; 8: 18-24
        • Anter E.
        • Tschabrunn C.M.
        • Josephson M.E.
        High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing.
        Circ Arrhythm Electrophysiol. 2015; 8: 537-545