Advertisement

The Electrocardiographic P Terminal Force in Lead V1, Its Components and the Association with Stroke and Atrial Fibrillation or Flutter

Published:November 23, 2022DOI:https://doi.org/10.1016/j.hrthm.2022.11.010

      Abstract

      BACKGROUND

      ECG marker P Terminal Force V1 (PTFV1) is generally perceived as a marker of left atrial pathology and has been associated with atrial fibrillation or flutter (AF).

      OBJECTIVE

      To determine the association between PTFV1 components (duration and amplitude) and incident AF and stroke/TIA.

      METHODS

      We included patients with an ECG recorded in the Copenhagen General Practitioners Laboratory in 2001-2011. PTFV1 of ≥ 4 mV·ms was considered abnormal. Patients with abnormal PTFV1 were stratified into tertiles based on duration (PTDV1) and amplitude (PTAV1) values. Cox regressions adjusted for age, sex and relevant comorbidities were used to investigate associations between abnormal PTFV1 components and AF and stroke/TIA.

      RESULTS

      Of 267,636 patients, 5,803 had AF and 18,176 had stroke/TIA (follow-up time 6.5 years). Abnormal PTFV1 was present in 44,549 (16.7%) subjects and was associated with an increased risk of AF and stroke/TIA. Among patients with abnormal PTFV1, the highest tertile of PTDV1 (78 ms to 97 ms) was associated with the highest risk of AF (hazard ratio (HR) 1.37 (95% CI: 1.23–1.52)) and highest risk of stroke/TIA (HR 1.13 (95% CI: 1.05 –1.20)). For PTAV1, the highest tertile (78 μV to 126 μV) conferred the highest risk of AF and stroke/TIA, with a HR of 1.20 (95% CI: 1.09–1.32) and 1.21 (95% CI:1.14-1.25), respectively.

      CONCLUSION

      Abnormal PTFV1 was associated with an increased risk of AF and stroke/TIA. Increasing PTDV1 showed a dose-response relationship with the development of AF and stroke/TIA, while the association between PTAV1 and AF was less apparent.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart Rhythm
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Piccini J.P.
        • Hammill B.G.
        • Sinner M.F.
        • Jensen P.N.
        • Hernandez A.F.
        • Heckbert S.R.
        • Benjamin E.J.
        • Curtis L.H.
        Incidence and prevalence of atrial fibrillation and associated mortality among medicare beneficiaries: 1993-2007.
        Circ. Cardiovasc. Qual. Outcomes. 2012; 5: 85-93https://doi.org/10.1161/CIRCOUTCOMES.111.962688
        • German D.M.
        • Kabir M.M.
        • Dewland T.A.
        • Henrikson C.A.
        • Tereshchenko L.G.
        Atrial Fibrillation Predictors: Importance of the Electrocardiogram.
        Ann. Noninvasive Electrocardiol. 2016; 21: 20-29https://doi.org/10.1111/anec.12321
      1. E.Z. Soliman, M. MD, MSc, P. Alvaro Alonso, MD, M. Jeffrey R. Misialek, M. Aditya Jain, MD, P. Karol E. Watson, MD, S. Don Lloyd-Jones, MD, M. Joao Lima, M. Steven Shea, M. Gregory L Burke, MD, P. Susan R. Heckbert, MD, Reference ranges of PR duration and P-wave indices in individuals free of cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA) Elsayed, Biol. Bull. 221 (2011) 18–34. https://doi.org/10.1038/jid.2014.371.

        • Eranti A.
        • Aro A.L.
        • Kerola T.
        • Anttonen O.
        • Rissanen H.A.
        • Tikkanen J.T.
        • Junttila M.J.
        • Kenttä T.V.
        • Knekt P.
        • Huikuri H.V.
        Prevalence and prognostic significance of abnormal P terminal force in lead V1 of the ECG in the general population.
        Circ. Arrhythmia Electrophysiol. 2014; 7: 1116-1121https://doi.org/10.1161/CIRCEP.114.001557
        • Hazen M.S.
        • Marwick T.H.
        • Underwood D.A.
        Diagnostic accuracy of the resting electrocardiogram in detection and estimation of left atrial enlargement: An echocardiographic correlation in 551 patients.
        Am. Heart J. 1991; 122: 823-828https://doi.org/10.1016/0002-8703(91)90531-L
        • Ishida K.
        • Hayashi H.
        • Miyamoto A.
        • Sugimoto Y.
        • Ito M.
        • Murakami Y.
        • Horie M.
        P wave and the development of atrial fibrillation.
        Hear. Rhythm. 2010; 7: 289-294https://doi.org/10.1016/j.hrthm.2009.11.012
        • Kwon Y.
        • Mchugh S.
        • Ghoreshi K.
        • Lyons G.R.
        • Cho Y.
        • Bilchick K.C.
        • Mazimba S.
        • Worrall B.B.
        • Akoum N.
        • Chen L.Y.
        • Soliman E.Z.
        Electrocardiographic left atrial abnormality in patients presenting with ischemic stroke.
        J. Stroke Cerebrovasc. Dis. 2020; 29https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105086
      2. H. Kamel, M. Hunter, Y.P. Moon, S. Yaghi, K. Cheung, M.R. Di Tullio, P.M. Okin, R.L. Sacco, E.Z. Soliman, M.S. V Elkind, Electrocardiographic left atrial abnormality and risk of stroke: Northern manhattan study, Stroke. 46 (2015) 3208–3212. https://doi.org/10.1161/STROKEAHA.115.009989.

        • Kohsaka S.
        • Sciacca R.R.
        • Sugioka K.
        • Sacco R.L.
        • Homma S.
        • Di Tullio M.R.
        Electrocardiographic left atrial abnormalities and risk of ischemic stroke.
        Stroke. 2005; 36: 2481-2483https://doi.org/10.1161/01.STR.0000185682.09981.26
        • Kamel H.
        • O’Neal W.T.
        • Okin P.M.
        • Loehr L.R.
        • Alonso A.
        • Soliman E.Z.
        Electrocardiographic left atrial abnormality and stroke subtype in the atherosclerosis risk in communities study.
        Ann. Neurol. 2015; 78: 670-678https://doi.org/10.1002/ana.24482
        • Nielsen J.B.
        • Pietersen A.
        • Graff C.
        • Lind B.
        • Struijk J.J.
        • Olesen M.S.
        • Haunsø S.
        • Gerds T.A.
        • Ellinor P.T.
        • Køber L.
        • Svendsen J.H.
        • Holst A.G.
        Risk of atrial fibrillation as a function of the electrocardiographic PR interval: Results from the Copenhagen ECG Study.
        Hear. Rhythm. 2013; 10: 1249-1256https://doi.org/10.1016/j.hrthm.2013.04.012
        • Sundbøll J.
        • Adelborg K.
        • Munch T.
        • Frøslev T.
        • Sørensen H.T.
        • Bøtker H.E.
        • Schmidt M.
        Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: A validation study.
        BMJ Open. 2016; 6https://doi.org/10.1136/bmjopen-2016-012832
        • Lynge E.
        • Sandegaard J.L.
        • Rebolj M.
        The Danish National Patient Register.
        Scand. J. Public Health. 2011; 39: 30-33https://doi.org/10.1177/1403494811401482
        • Kildemoes H.W.
        • Sorensen H.T.
        • Hallas J.
        The Danish National Prescription Registry.
        Scand J Public Heal. 2011; 39: 38-41https://doi.org/10.1177/1403494810394717
        • Pottegård A.
        • Christensen R.D.
        • Houji A.
        • Christiansen C.B.
        • Paulsen M.S.
        • Thomsen J.L.
        • Hallas J.
        Primary non-adherence in general practice: A Danish register study.
        Eur. J. Clin. Pharmacol. 2014; 70: 757-763https://doi.org/10.1007/s00228-014-1677-y
        • Morris J.J.
        • Estes E.H.
        • Whalen R.E.
        • Thompson H.K.
        • Mcintosh H.D.
        P-Wave Analysis in Valvular Heart Disease.
        Circulation. 1964; 29: 242-252https://doi.org/10.1161/01.CIR.29.2.242
        • Soliman E.Z.
        • Prineas R.J.
        • Case L.D.
        • Zhang Z.M.
        • Goff D.C.
        Ethnic distribution of ecg predictors of atrial fibrillation and its impact on understanding the ethnic distribution of ischemic stroke in the atherosclerosis risk in communities (ARIC) study.
        Stroke. 2009; 40: 1204-1211https://doi.org/10.1161/STROKEAHA.108.534735
      3. J. Gu, J.J. Andreasen, J. Melgaard, S. Lundbye-Christensen, J. Hansen, E.B. Schmidt, K. Thorsteinsson, C. Graff, Preoperative Electrocardiogram Score for Predicting New-Onset Postoperative Atrial Fibrillation in Patients Undergoing Cardiac Surgery, J. Cardiothorac. Vasc. Anesth. (2016) 1–8. https://doi.org/10.1053/j.jvca.2016.05.036.

        • Tereshchenko L.G.
        • Henrikson C.A.
        • Sotoodehnia N.
        • Arking D.E.
        • Agarwal S.K.
        • Siscovick D.S.
        • Post W.S.
        • Solomon S.D.
        • Coresh J.
        • Josephson M.E.
        • Soliman E.Z.
        Electrocardiographic deep terminal negativity of the P wave in V1 and risk of sudden cardiac death: The atherosclerosis risk in communities (aric) study.
        J. Am. Heart Assoc. 2014; 3: 1-11https://doi.org/10.1161/JAHA.114.001387
        • Magnani J.W.
        • Lopez F.L.
        • Soliman E.Z.
        • Maclehose R.F.
        • Crow R.S.
        • Alonso A.
        P wave indices, obesity, and the metabolic syndrome: The atherosclerosis risk in communities study.
        Obesity. 2012; 20: 666-672https://doi.org/10.1038/oby.2011.53
        • Herweg B.
        • Chang F.
        • Chandra P.
        • Danilo P.
        • Rosen M.R.
        Cardiac memory in canine atrium: Identification and implications.
        Circulation. 2001; 103: 455-461https://doi.org/10.1161/01.CIR.103.3.455
        • Win T.T.
        • Venkatesh B.A.
        • Volpe G.J.
        • Mewton N.
        • Rizzi P.
        • Sharma R.K.
        • Strauss D.G.
        • Lima J.A.
        • Tereshchenko L.G.
        Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: The PRIMERI study.
        Hear. Rhythm. 2015; 12: 155-162https://doi.org/10.1016/j.hrthm.2014.09.044
        • Harrison M.J.G.
        • Marshall J.
        Atrial fibrillation, TIAs and completed strokes.
        Stroke. 1984; 15: 441-442https://doi.org/10.1161/01.STR.15.3.441
        • Platonov P.G.
        P-wave morphology: Underlying mechanisms and clinical implications.
        Ann. Noninvasive Electrocardiol. 2012; 17: 161-169https://doi.org/10.1111/j.1542-474X.2012.00534.x
        • Rautaharju P.M.
        • Park L.
        • Rautaharju F.S.
        • Crow R.
        A standardized procedure for locating and documenting ECG chest electrode positions: Consideration of the effect of breast tissue on ECG amplitudes in women.
        J. Electrocardiol. 1998; 31: 17-29https://doi.org/10.1016/S0022-0736(98)90003-6
      4. A. Loewe, R. Andlauer, P.G. Platonov, D. Olaf, G. Seemann, Left Atrial Hypertrophy Increases P-Wave Terminal Force Through Amplitude but not Duration, 43 (2016) 1–4. https://doi.org/10.22489/CinC.2016.001-107.

        • Hannon N.
        • Sheehan O.
        • Kelly L.
        • Marnane M.
        • Merwick A.
        • Moore A.
        • Kyne L.
        • Duggan J.
        • Moroney J.
        • Mccormack P.M.E.
        • Daly L.
        • Fitz-Simon N.
        • Harris D.
        • Horgan G.
        • Williams E.B.
        • Furie K.L.
        • Kelly P.J.
        Stroke Associated with Atrial Fibrillation-Incidence and Early Outcomes in the North Dublin Population Stroke Study.
        Cerebrovasc Dis. 2010; 29: 43-49https://doi.org/10.1159/000255973
        • Overvad T.F.
        • Nielsen P.B.
        • Larsen T.B.
        • Søgaard P.
        Left atrial size and risk of stroke in patients in sinus rhythm: A systematic review.
        Thromb. Haemost. 2016; 116: 206-219https://doi.org/10.1160/TH15-12-0923
        • Isaksen J.L.
        • Baumert M.
        • Hermans A.N.L.
        • Maleckar M.
        • Linz D.
        Artificial intelligence for the detection, prediction, and management of atrial fibrillation.
        Herzschrittmachertherapie Und Elektrophysiologie. 2022; 33: 34-41https://doi.org/10.1007/s00399-022-00839-x
        • Han C.
        • Kwon O.
        • Chang M.
        • Joo S.
        • Lee Y.
        • Lee J.S.
        • Hong J.M.
        • Lee S.-J.
        • Yoon D.
        Evaluating the Risk of Paroxysmal Atrial Fibrillation in Noncardioembolic Ischemic Stroke Using Artificial Intelligence-Enabled ECG Algorithm.
        Front. Cardiovasc. Med. 2022; 9: 1-9https://doi.org/10.3389/fcvm.2022.865852
        • Weil E.L.
        • Noseworthy P.A.
        • Lopez C.L.
        • Rabinstein A.A.
        • Friedman P.A.
        • Attia Z.I.
        • Yao X.
        • Siontis K.C.
        • Kremers W.K.
        • Christopoulos G.
        • Mielke M.M.
        • Vemuri P.
        • Jack C.R.
        • Gersh B.J.
        • Machulda M.M.
        • Knopman D.S.
        • Petersen R.C.
        • Graff-Radford J.
        Artificial Intelligence–Enabled Electrocardiogram for Atrial Fibrillation Identifies Cognitive Decline Risk and Cerebral Infarcts.
        Mayo Clin. Proc. 2022; 97: 871-880https://doi.org/10.1016/j.mayocp.2022.01.026
        • Rabinstein A.A.
        • Yost M.D.
        • Faust L.
        • Kashou A.H.
        • Latif O.S.
        • Graff-Radford J.
        • Attia I.Z.
        • Yao X.
        • Noseworthy P.A.
        • Friedman P.A.
        Artificial Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in Embolic Stroke of Unknown Source.
        J. Stroke Cerebrovasc. Dis. 2021; 30105998https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105998
        • Attia Z.I.
        • Noseworthy P.A.
        • Lopez-Jimenez F.
        • Asirvatham S.J.
        • Deshmukh A.J.
        • Gersh B.J.
        • Carter R.E.
        • Yao X.
        • Rabinstein A.A.
        • Erickson B.J.
        • Kapa S.
        • Friedman P.A.
        An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.
        Lancet. 2019; 394: 861-867https://doi.org/10.1016/S0140-6736(19)31721-0