Hands On
3 Results
- Hands on
How to use intracardiac echocardiography for atrial fibrillation ablation procedures
Heart RhythmVol. 4Issue 2p242–245Published online: November 10, 2006- David J. Callans
- Mark A. Wood
Cited in Scopus: 5Intracardiac echocardiography (ICE) has been an important tool in the development of advanced catheter ablation procedures. ICE technology now allows complete echocardiographic interrogation of all four heart chambers from the right atrium. A list of the uses for ICE in ablation procedures is given in Table 1. - Hands on
How to manage the patient with a high defibrillation threshold
Heart RhythmVol. 3Issue 4p492–495Published online: March 7, 2006- Sumeet K. Mainigi
- David J. Callans
Cited in Scopus: 44Defibrillation threshold (DFT) testing is an integral part of implantable cardioverter-defibrillator (ICD) placement and follow-up. Unfortunately, the DFT can vary widely from day to day, influenced by many factors including electrolytes, sympathetic tone, antiarrhythmic drugs, and other medications. For this reason, a 10-J safety margin between the lowest successful defibrillation energy during testing and the maximal device output has been widely adapted as standard practice.1 - Hands on
Using the twelve-lead electrocardiogram to localize the site of origin of ventricular tachycardia
Heart RhythmVol. 2Issue 4p443–446Published online: March 11, 2005- Mark E. Josephson
- David J. Callans
Cited in Scopus: 60The basis of this review is the underlying hypothesis that the QRS morphology on 12-lead ECG is, to a great extent, determined by the site from which a focal ventricular tachycardia (VT) arises or from which a reentrant circuit exits the central isthmus to activate the “normal” myocardium. The ability to localize or, at the very least, regionalize “the sites of origin” of VTs enables the electrophysiologist to concentrate mapping to a specific region. Several factors limit the ability of the QRS patterns to localize VT origin, including (1) presence and size of infarction, (2) degree of intramyocardial fibrosis, (3) shape of the heart (e.g., aneurysm) and its position within the chest cavity, (4) site and mechanism of VT within an infarct or scarred area, (5) influence of nonuniform anisotropy in affecting propagation from the site of the tachycardia, (6) effects of acute ischemia, antiarrhythmic drugs, or metabolic abnormalities on conduction, (7) integrity of the His-Purkinje system, (8) presence of increased myocardial mass, and (9) presence of structural abnormalities unrelated to tachycardia origin or mechanisms.