x
Filter:
Filters applied
- Hands On
- AFRemove AF filter
Author
- Ellenbogen, Kenneth A2
- Koneru, Jayanthi N2
- Andrade, Jason G1
- Badhwar, Nitish1
- Chen, Qi1
- Collet, Daina1
- Dubuc, Marc1
- Fürnkranz, Alexander1
- Kamioka, Masashi1
- Khairy, Paul1
- Kojodjojo, Pipin1
- Kowalski, Marcin1
- Kuck, Karl-Heinz1
- Lee, Randall J1
- Li, Xuping1
- Liu, Qiming1
- Macle, Laurent1
- Makimoto, Hisaki1
- Mathew, Shibu1
- Metzner, Andreas1
- Orlov, Michael V1
- Ouyang, Feifan1
- Rausch, Peter1
- Richard Tilz, Roland1
- Rillig, Andreas1
Hands On
6 Results
- Hands On
Pulmonary vein signal interpretation during cryoballoon ablation for atrial fibrillation
Heart RhythmVol. 12Issue 6p1387–1394Published online: February 24, 2015- Jason G. Andrade
- Marc Dubuc
- Daina Collet
- Paul Khairy
- Laurent Macle
Cited in Scopus: 9The recognition that paroxysmal atrial fibrillation (AF) is predominantly triggered by ectopic beats arising from the vicinity of pulmonary veins (PVs) has spurred the establishment of percutaneous procedures specifically designed to electrically sequestrate the arrhythmogenic PV from the vulnerable left atrium (LA) substrate.1 Recently, the procedure has evolved with the development of purpose-built pulmonary vein isolation (PVI) tools, such as the cryoballoon catheter. This article discusses the anatomic and electrophysiologic bases for the interpretation of pulmonary vein potentials (PVPs) using a small-caliber circular mapping catheter (CMC) and provides an expanded discussion on the pacing maneuvers relevant to cryoballoon-based PVI procedures. - Hands On
Prevention of phrenic nerve injury during interventional electrophysiologic procedures
Heart RhythmVol. 11Issue 10p1839–1844Published online: June 18, 2014- Marcin Kowalski
- Kenneth A. Ellenbogen
- Jayanthi N. Koneru
Cited in Scopus: 33- Video
- Audio
The advent of innovative, potent ablative technologies and the adoption of endo–epicardial approaches to treat various arrhythmias have engendered a need for developing strategies to prevent collateral damage to critical structures such as the phrenic nerve (PN) and the esophagus during percutaneous electrophysiologic interventions. Here we detail phrenic nerve injury (PNI) prevention strategies during atrial fibrillation (AF), atrial tachycardia (AT), and ventricular tachycardia (VT) ablation. PNI is more common on the right side because of the anatomic course of the nerve and the greater preponderance of AF and AT ablations. - HANDS ON
LAA ligation using the LARIAT suture delivery device: Tips and tricks for a successful procedure
Heart RhythmVol. 11Issue 5p911–921Published online: January 23, 2014- Jayanthi N. Koneru
- Nitish Badhwar
- Kenneth A. Ellenbogen
- Randall J. Lee
Cited in Scopus: 25Chronic oral anticoagulation (OAC) has traditionally been considered as the most effective prophylaxis against thromboembolic events in patients with atrial fibrillation (AF). However, as many as 20% of the patients with AF are not candidates for OAC.1,2 Reasons for ineligibility range from intracranial bleeding (the most serious complication) to increased propensity for mechanical injury (the least serious complication). The resumption of OAC in patients who have suffered a life-threatening complication due to OAC is associated with a much higher risk of such events in the future. - HANDS ON
Safety and feasibility of transseptal puncture for atrial fibrillation ablation in patients with atrial septal defect closure devices
Heart RhythmVol. 11Issue 2p330–335Published online: November 18, 2013- Xuping Li
- Erik Wissner
- Masashi Kamioka
- Hisaki Makimoto
- Peter Rausch
- Andreas Metzner
- and others
Cited in Scopus: 40AF is often found in association with an ASD.1–4 There are an increasing number of patients undergoing transcatheter closure of an ASD who subsequently develop AF in clinical practice.2–4 Catheter ablation has emerged as an effective treatment strategy for drug-refractory symptomatic AF.5 While transseptal access to the left atrium (LA) is a prerequisite for AF ablation, it may prove difficult in the presence of an ASD closure device.6,7 Anticipating technical difficulties and potential complications may discourage operators from considering catheter ablation of AF in this particular patient population. - Focus issue: Atrial fibrillation Hands on
How to perform antral pulmonary venous isolation using the cryoballoon
Heart RhythmVol. 8Issue 9p1452–1456Published online: June 17, 2011- Pipin Kojodjojo
- D. Wyn Davies
Cited in Scopus: 9This article describes our current practice, clinical outcomes, and future directions for the use of balloon cryoablation for the treatment of atrial fibrillation. - Hands on
How to perform and interpret rotational angiography in the electrophysiology laboratory
Heart RhythmVol. 6Issue 12p1830–1836Published online: July 13, 2009- Michael V. Orlov
Cited in Scopus: 12Sophisticated imaging methods have been growing in popularity since the introduction of curative ablation procedures for atrial fibrillation (AF). This trend is predicated on the need for a precise anatomic guidance within the complex left atrial (LA) anatomy and less reliance on electrocardiographic characteristics of the substrate. Traditional two-dimensional imaging methods such as fluoroscopy would not satisfy the needs of a complex catheter navigation inside three-dimensional (3D) anatomic structures that may not be confined to the radiographic cardiac silhouette (e.g., pulmonary veins [PVs]).