x
Filter:
Filters applied
- Hands On
- Implantable cardioverter-defibrillatorRemove Implantable cardioverter-defibrillator filter
Keyword
- ICD2
- implantable cardioverter-defibrillator2
- Permanent pacemaker2
- Cardiac device infection1
- Catecholaminergic polymorphic ventricular tachycardia1
- CPVT1
- Device removal1
- DFT1
- EIT1
- Extraction1
- Implantation technique1
- Infection1
- LCSD1
- Lead extraction1
- Left cardiac sympathetic denervation1
- Life-threatening arrhythmia1
- Long QT syndrome1
- LQTS1
- Magnetic resonance imaging1
- Pacemaker1
- S-ICD1
- Safety1
- Subcutaneous implantable cardioverter-defibrillator1
- VF1
Hands On
5 Results
- Hands On
Two-incision technique for implantation of the subcutaneous implantable cardioverter-defibrillator
Heart RhythmVol. 10Issue 8p1240–1243Published online: May 23, 2013- Reinoud E. Knops
- Louise R.A. Olde Nordkamp
- Joris R. de Groot
- Arthur A.M. Wilde
Cited in Scopus: 116Three incisions in the chest are necessary for implantation of the entirely subcutaneous implantable cardioverter-defibrillator (S-ICD). The superior parasternal incision is a possible risk for infection and a potential source of discomfort. A less invasive alternative technique of implanting the S-ICD electrode—the two-incision technique—avoids the superior parasternal incision. - Hands on
Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: The surgical supraclavicular approach to cervicothoracic sympathectomy
Heart RhythmVol. 7Issue 8p1161–1165Published online: June 10, 2010- Attilio Odero
- Antonio Bozzani
- Gaetano M. De Ferrari
- Peter J. Schwartz
Cited in Scopus: 84The progressive understanding of the diseases associated with significant risk for sudden cardiac death has fostered the development of early diagnosis and risk stratification. Thus, instead of starting from either a sudden death victim or a survivor of a cardiac arrest, it has become relatively common for cardiologists to identify individuals at high risk for sudden death, often after an arrhythmic nonlethal cardiac event such as syncope. Besides ischemic heart disease, it has also been recognized that children and young adults can be affected by arrhythmogenic disorders of genetic origin with a high propensity for lethal arrhythmias. - Hands on
How to perform magnetic resonance imaging on patients with implantable cardiac arrhythmia devices
Heart RhythmVol. 6Issue 1p138–143Published online: October 24, 2008- Saman Nazarian
- Henry R. Halperin
Cited in Scopus: 65Magnetic resonance imaging (MRI) offers unrivaled soft tissue resolution and multiplanar imaging capabilities. Cardiac MRI is capable of accurate characterization of cardiac function and is uniquely capable of identifying scar fibrosis and fat deposition, thus making it an ideal imaging modality for the evaluation of patients presenting with arrhythmia. In addition, the absence of x-ray radiation makes MRI suitable for follow-up of chronic disease and for imaging in young patients and women of childbearing age. - Hands on
How to prevent, recognize, and manage complications of lead extraction. Part III: Procedural factors
Heart RhythmVol. 5Issue 9p1352–1354Published online: February 28, 2008- Charles A. Henrikson
- Jeffrey A. Brinker
Cited in Scopus: 30The major risks of percutaneous lead extraction include cardiac perforation (1%–4%), emergency cardiac surgery (1%–2%), and death (0.4%–0.8%). However, risk to an individual varies in accordance with a number of factors (Table 1), and informed consent must be tailored to the specific patient. Indicators of very high risk (Table 2) define relative contraindications to the procedure; patients without other options should be referred to experienced centers capable of managing these special cases. Surgical backup should be secured prior to every extraction. - Hands on
How to select patients for lead extraction
Heart RhythmVol. 4Issue 7p978–985Published online: June 8, 2007- Michael E. Field
- Samuel O. Jones
- Laurence M. Epstein
Cited in Scopus: 32The techniques and tools for percutaneous removal of transvenous leads have undergone substantial development over the past several decades. Although the use of locking stylets and powered sheaths to free leads from encapsulated scar tissue has improved the success rate, the procedure still carries a significant risk of morbidity and mortality even in the hands of experienced operators. The threshold for lead extraction continues to evolve. The initial use of the procedure was limited to patients with life-threatening infections because of limited tools, lower success rates and high complication rates.