x
Filter:
Filters applied
- Hands On
- LARemove LA filter
Author
- Andrade, Jason G1
- Badhwar, Nitish1
- Berte, Benjamin1
- Chen, Qi1
- Cochet, Hubert1
- Collet, Daina1
- Denis, Arnaud1
- Derval, Nicolas1
- Dubuc, Marc1
- Ellenbogen, Kenneth A1
- Fürnkranz, Alexander1
- Haissaguerre1
- Hocini, Mélèze1
- Jais1
- Kamioka, Masashi1
- Khairy, Paul1
- Komatsu, Yuki1
- Koneru, Jayanthi N1
- Kuck, Karl-Heinz1
- Lee, Randall J1
- Li, Xuping1
- Lim, Han S1
- Liu, Qiming1
- Macle, Laurent1
- Mahida, Saagar1
Hands On
5 Results
- Hands On
Pulmonary vein signal interpretation during cryoballoon ablation for atrial fibrillation
Heart RhythmVol. 12Issue 6p1387–1394Published online: February 24, 2015- Jason G. Andrade
- Marc Dubuc
- Daina Collet
- Paul Khairy
- Laurent Macle
Cited in Scopus: 9The recognition that paroxysmal atrial fibrillation (AF) is predominantly triggered by ectopic beats arising from the vicinity of pulmonary veins (PVs) has spurred the establishment of percutaneous procedures specifically designed to electrically sequestrate the arrhythmogenic PV from the vulnerable left atrium (LA) substrate.1 Recently, the procedure has evolved with the development of purpose-built pulmonary vein isolation (PVI) tools, such as the cryoballoon catheter. This article discusses the anatomic and electrophysiologic bases for the interpretation of pulmonary vein potentials (PVPs) using a small-caliber circular mapping catheter (CMC) and provides an expanded discussion on the pacing maneuvers relevant to cryoballoon-based PVI procedures. - Hands On
Safety and prevention of complications during percutaneous epicardial access for the ablation of cardiac arrhythmias
Heart RhythmVol. 11Issue 9p1658–1665Published online: June 5, 2014- Han S. Lim
- Frédéric Sacher
- Hubert Cochet
- Benjamin Berte
- Seigo Yamashita
- Saagar Mahida
- and others
Cited in Scopus: 27Since its introduction, percutaneous epicardial access is increasingly being performed to facilitate catheter ablation of ventricular tachycardias (VTs) with epicardial circuits, difficult cases of idiopathic VTs, focal atrial tachycardia, and accessory pathways that cannot be successfully targeted endocardially.1 A thorough understanding of the clinical anatomy and potential complications is vital in order to perform a safe procedure.2 In this article, we present the clinical anatomy related to epicardial access, the technique of performing a subxiphoid epicardial puncture, and various measures to prevent complications. - HANDS ON
LAA ligation using the LARIAT suture delivery device: Tips and tricks for a successful procedure
Heart RhythmVol. 11Issue 5p911–921Published online: January 23, 2014- Jayanthi N. Koneru
- Nitish Badhwar
- Kenneth A. Ellenbogen
- Randall J. Lee
Cited in Scopus: 25Chronic oral anticoagulation (OAC) has traditionally been considered as the most effective prophylaxis against thromboembolic events in patients with atrial fibrillation (AF). However, as many as 20% of the patients with AF are not candidates for OAC.1,2 Reasons for ineligibility range from intracranial bleeding (the most serious complication) to increased propensity for mechanical injury (the least serious complication). The resumption of OAC in patients who have suffered a life-threatening complication due to OAC is associated with a much higher risk of such events in the future. - HANDS ON
Safety and feasibility of transseptal puncture for atrial fibrillation ablation in patients with atrial septal defect closure devices
Heart RhythmVol. 11Issue 2p330–335Published online: November 18, 2013- Xuping Li
- Erik Wissner
- Masashi Kamioka
- Hisaki Makimoto
- Peter Rausch
- Andreas Metzner
- and others
Cited in Scopus: 40AF is often found in association with an ASD.1–4 There are an increasing number of patients undergoing transcatheter closure of an ASD who subsequently develop AF in clinical practice.2–4 Catheter ablation has emerged as an effective treatment strategy for drug-refractory symptomatic AF.5 While transseptal access to the left atrium (LA) is a prerequisite for AF ablation, it may prove difficult in the presence of an ASD closure device.6,7 Anticipating technical difficulties and potential complications may discourage operators from considering catheter ablation of AF in this particular patient population. - Hands on
How to perform and interpret rotational angiography in the electrophysiology laboratory
Heart RhythmVol. 6Issue 12p1830–1836Published online: July 13, 2009- Michael V. Orlov
Cited in Scopus: 12Sophisticated imaging methods have been growing in popularity since the introduction of curative ablation procedures for atrial fibrillation (AF). This trend is predicated on the need for a precise anatomic guidance within the complex left atrial (LA) anatomy and less reliance on electrocardiographic characteristics of the substrate. Traditional two-dimensional imaging methods such as fluoroscopy would not satisfy the needs of a complex catheter navigation inside three-dimensional (3D) anatomic structures that may not be confined to the radiographic cardiac silhouette (e.g., pulmonary veins [PVs]).